pISSN 2394-6032 | eISSN 2394-6040

## **Review Article**

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20244059

# Definition, indication and outcome of miniscrew-assisted rapid palatal expansion

Ebraheem H. Almoabady<sup>1\*</sup>, Adel A. Alzamzami<sup>2</sup>, Tahani S. Alrashdi<sup>3</sup>, Khalid M. Mujthil<sup>4</sup>, Kholoud S. Almohammadi<sup>5</sup>, Yazan A. Okashah<sup>6</sup>, Anfal H. Alotaibi<sup>7</sup>, Mohammed I. Alghamdi<sup>8</sup>, Saja A. Alamrani<sup>9</sup>, Fatima S. Amanullah<sup>10</sup>, Fatima A. Alzyiad<sup>11</sup>, Turki A. Safhi<sup>12</sup>

**Received:** 25 November 2024 **Accepted:** 16 December 2024

### \*Correspondence:

Dr. Ebraheem H. Almoabady, E-mail: ealmoabady@moh.gov.sa

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

### **ABSTRACT**

Miniscrew-assisted rapid palatal expansion (MARPE) is an innovative orthodontic technique designed to address transverse maxillary deficiencies by achieving skeletal expansion while minimizing dental compensations. This technique integrates skeletal anchorage through miniscrews, which direct expansion forces to the maxillary sutures rather than the dentition. MARPE is particularly effective in skeletally mature patients, where traditional methods often fall short due to increased resistance from ossified sutures. By overcoming these limitations, MARPE has expanded the scope of non-surgical treatment options for adolescents and adults with maxillary constriction. The biomechanics of MARPE rely on precise miniscrew placement and activation protocols, which facilitate controlled expansion of the midpalatal suture and surrounding craniofacial structures. Short-term outcomes include significant increases in maxillary width and nasal airway volume, which improve both esthetics and respiratory function. Long-term studies demonstrate the stability of MARPE-induced skeletal changes, with minimal relapse when retention protocols are followed. Additionally, the procedure is effective in alleviating conditions associated with maxillary deficiencies, such as obstructive sleep apnea. Challenges associated with MARPE include anatomical variability, patient compliance, and complications such as miniscrew loosening or infection. Advanced imaging tools and customized device designs have mitigated many of these issues, enhancing treatment predictability and safety. Limitations, including the financial burden and technical demands of the procedure, highlight the need for ongoing innovation to increase accessibility. MARPE represents a significant advancement in orthodontics, combining functionality, esthetics, and patient-centered care. Its growing adoption and the increasing body of evidence supporting its effectiveness underscore its role as a transformative option in managing complex dentofacial discrepancies.

Keywords: MARPE, Transverse maxillary deficiency, Skeletal expansion, Orthodontics, Obstructive sleep apnea

<sup>&</sup>lt;sup>1</sup>Department of Orthodontics, Al Thager Hospital, Jeddah, Saudi Arabia

<sup>&</sup>lt;sup>2</sup>Dental Department, Al Thager Hospital, Jeddah, Saudi Arabia

<sup>&</sup>lt;sup>3</sup>Dental Department, North Jeddah Speciality Dental Center, Jeddah, Saudi Arabia

<sup>&</sup>lt;sup>4</sup>College of Dentistry, King Khalid Medical City, Abha, Saudi Arabia

<sup>&</sup>lt;sup>5</sup>Dental Department, Ministry of Health, Medina, Saudi Arabia

<sup>&</sup>lt;sup>6</sup>College of Dentistry, Taibah University, Medina, Saudi Arabia

<sup>&</sup>lt;sup>7</sup>Dental Department, Samaya Private Clinic, Taif, Saudi Arabia

<sup>&</sup>lt;sup>8</sup>College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

<sup>&</sup>lt;sup>9</sup>Dental Department, Haql General Hospital, Haql, Saudi Arabia

<sup>&</sup>lt;sup>10</sup>Dental Department, Deryaq Dental Center, Khamis Mushait, Saudi Arabia

<sup>&</sup>lt;sup>11</sup>Dental Department, King Khaled Primary Health Care, Abha, Saudi Arabia

<sup>&</sup>lt;sup>12</sup>Flight Clinic, Prince Sultan Air Base, Al Kharj, Saudi Arabia

### INTRODUCTION

Rapid palatal expansion (RPE) has been a cornerstone in the management of transverse maxillary deficiencies, a common orthodontic problem characterized by a narrow maxilla relative to the mandible. Traditional RPE relies on skeletal sutural widening to increase maxillary width. However, its effects in skeletally mature patients are often limited due to increased resistance from ossified sutures and the subsequent dental compensations that occur. These limitations necessitated the development of more advanced techniques, one of which is miniscrew-assisted rapid palatal expansion (MARPE) (Figure 1).<sup>1</sup>



Figure 1: Example of a miniscrew-assisted rapid palatal expander (MARPE) device.

MARPE integrates miniscrew anchorage into the traditional RPE framework to minimize dental side effects and optimize skeletal expansion. This technique has gained significant attention for its ability to overcome the resistance of ossified midpalatal sutures, making it a viable option for both adolescent and adult patients. The addition of miniscrews enhances the stability and predictability of addressing the shortcomings expansion. conventional devices, particularly in non-growing individuals.<sup>2,3</sup> The indications for MARPE extend beyond correcting simple transverse deficiencies. It has demonstrated efficacy in managing a variety of craniofacial conditions, such as obstructive sleep apnea (OSA), by increasing the nasal airway volume. By improving maxillary arch width, MARPE also facilitates better alignment of crowded teeth and enhances occlusal relationships. Its versatility and wide range of indications have positioned it as a transformative tool in orthodontics and dentofacial orthopedics.<sup>3,4</sup>

Despite its advantages, MARPE is not without challenges. Skeletal resistance, patient-specific anatomical variations, and potential complications, such as miniscrew loosening or failure, require careful planning and execution. The selection of appropriate candidates and the customization of expansion protocols are critical for achieving optimal outcomes. Additionally, the long-term stability of MARPE results, particularly in adults, remains an area of ongoing research. As the technique evolves, understanding its

biomechanics, indications, and outcomes becomes essential for clinicians aiming to integrate it into their practice.<sup>4</sup>

MARPE represents a significant advancement in orthodontic treatment, offering a minimally invasive yet highly effective solution for transverse maxillary deficiencies. By leveraging skeletal anchorage, this technique achieves outcomes that are both functional and esthetic, addressing the limitations of traditional expansion methods. With its growing adoption worldwide, MARPE continues to redefine the scope of orthodontic treatment in diverse patient populations.

### **REVIEW**

MARPE has revolutionized the management of transverse maxillary deficiencies, offering significant advantages over traditional expansion methods. One of the key benefits of MARPE is its ability to achieve true skeletal expansion by bypassing dental compensations, a limitation often encountered in conventional RPE. This is particularly advantageous in skeletally mature patients, where ossified mid-palatal sutures pose a challenge to traditional methods. MARPE has shown efficacy in not only increasing maxillary width but also improving nasal airway volume, providing additional therapeutic benefits for conditions such as OSA.<sup>5</sup>

The biomechanics of MARPE rely on the strategic placement of mini screws, which act as direct anchors to the bone, thereby reducing stress on teeth and enhancing the predictability of outcomes. However, its application is not without challenges. Skeletal resistance and anatomical variations, such as narrow palatal vaults, may affect the success of the procedure. Furthermore, complications such as screw loosening or patient discomfort must be managed with careful planning and technique refinement. Despite these challenges, MARPE has emerged as a versatile tool in orthodontics, with long-term studies increasingly validating its effectiveness. Its ability to address complex dentofacial discrepancies underscores its growing importance in clinical practice.

# Biomechanics and mechanism of miniscrew-assisted rapid palatal expansion

MARPE has redefined the biomechanical approach to addressing transverse maxillary deficiencies. RPE relies heavily on dental anchorage, which often leads to undesirable effects such as tipping of teeth and alveolar bone bending. By integrating miniscrews into the expansion framework, MARPE shifts the forces directly to the skeletal structures, achieving a more targeted and effective skeletal expansion. This modification significantly reduces the reliance on teeth for anchorage, allowing for better preservation of periodontal health and more predictable outcomes.

The primary mechanism underlying MARPE involves the application of forces sufficient to overcome the resistance of the midpalatal suture and adjacent skeletal structures. During the early stages of treatment, the tensile forces generated by the expander are concentrated on the miniscrews, which are anchored in the cortical bone. These forces stimulate a biomechanical response that leads to the separation of the maxillary bones at the midpalatal suture. Additionally, the lateral displacement of the maxilla is facilitated by secondary effects on the surrounding sutures, such as the zygomaticomaxillary and pterygopalatine sutures, which enhances the extent of skeletal expansion.<sup>8</sup> An essential feature of MARPE is the design and placement of the miniscrews. Typically, four miniscrews are strategically positioned in the posterior region of the palate, with their placement determined by individual anatomic considerations such as palatal vault height and bone density. The screws provide a stable foundation for the expander, ensuring that the forces generated are concentrated on the skeletal structures rather than the teeth. The stability of these screws is critical for achieving successful outcomes, as loosening or improper placement can compromise the expansion process.9 The magnitude and direction of forces in MARPE are another distinguishing factor. Unlike traditional RPE, where the forces are primarily dental and distributed unevenly, MARPE ensures a more uniform distribution of forces across the skeletal structures. This uniformity reduces the risk of asymmetric expansion and ensures greater control over the expansion process. Furthermore, the use of custom-fitted expanders tailored to the patient's anatomy enhances the precision of force application, optimizing the treatment outcomes.

Despite its advancements, the biomechanical principles of MARPE are influenced by several variables. Patient-specific factors such as age, skeletal maturity, and the degree of midpalatal suture ossification play a significant role in determining the success of the procedure. For instance, in younger patients, the sutures are more pliable, allowing for easier separation. In contrast, skeletally mature individuals require higher forces and longer activation periods to achieve the same results due to increased suture rigidity. These factors necessitate a tailored approach to MARPE, where the device's design and activation protocol are adjusted to suit the individual needs of each patient.

The integration of finite element analysis (FEA) in recent years has provided deeper insights into the biomechanics of MARPE. FEA studies have demonstrated how variations in miniscrew placement, angulation, and expander design influence the stress distribution and displacement patterns during expansion. These findings have guided clinicians in optimizing the mechanical properties of MARPE devices, ensuring better clinical outcomes. The biomechanical advantages of MARPE make it a superior alternative to traditional RPE in managing complex maxillary deficiencies. Its ability to achieve skeletal expansion with minimal dental side effects

has made it an invaluable tool for orthodontists. Ongoing research into the underlying mechanisms of MARPE continues to refine its application, paving the way for further innovations in skeletal anchorage systems.

### Clinical indications and patient selection criteria

The decision to utilize MARPE depends on a comprehensive evaluation of clinical indications and patient-specific factors. Traditionally, RPE has been reserved for younger patients with growing skeletal structures. However, MARPE extends the application of transverse maxillary expansion to skeletally mature patients and those with unique dentofacial conditions that were previously considered challenging or unsuitable for conventional expansion methods.<sup>11</sup>

One of the primary indications for MARPE is the treatment of transverse maxillary deficiency, often characterized by a narrow maxillary arch, posterior crossbites, and dental crowding. This condition frequently results in functional and esthetic challenges, such as compromised occlusion and asymmetric facial profiles. MARPE's ability to achieve skeletal expansion by overcoming the resistance of ossified midpalatal sutures makes it particularly effective in adult and adolescent patients who have surpassed their growth spurt. It has demonstrated success in reducing the reliance on compensatory orthodontic interventions, such as extractions or surgical approaches.<sup>12</sup>

In addition to addressing maxillary constriction, MARPE is increasingly recognized for its role in managing airway-related conditions, particularly OSA. Transverse maxillary deficiency is often associated with reduced nasal airway volume, contributing to compromised airflow during sleep. MARPE facilitates the widening of the nasal cavity, which can alleviate airway obstruction and improve respiratory function. Studies have reported significant improvements in nasal breathing and reductions in apnea-hypopnea index scores following MARPE, highlighting its therapeutic potential beyond orthodontics. <sup>13,14</sup>

Patient selection for MARPE requires meticulous assessment of several factors, including skeletal maturity, dental alignment, and overall craniofacial anatomy. Skeletal maturity plays a pivotal role in determining the feasibility of MARPE, as the ossification of midpalatal and circummaxillary sutures varies with age. While younger patients with open sutures generally experience more predictable outcomes, MARPE has also proven effective in older patients with partially ossified or fused sutures, provided the forces are adequately controlled. Radiographic imaging, such as cone-beam computed tomography (CBCT), is essential in assessing suture patency and guiding the treatment planning process. 15

Another critical consideration in patient selection is the condition of the supporting dentition and periodontium. Patients with compromised dental health, such as extensive caries, periodontal disease, or insufficient alveolar bone

support, may require preliminary treatment or alternative interventions before MARPE can be implemented. Additionally, the presence of dental prostheses or implants in the maxillary arch necessitates careful planning, as these structures can impact the distribution of forces during expansion. <sup>16</sup>

Anatomic variations, such as palatal vault height and maxillary bone thickness, also influence the placement and stability of miniscrews. For example, a shallow palatal vault may limit the available bone for screw insertion, requiring customized devices or modifications in screw angulation. Moreover, patients with systemic conditions affecting bone metabolism, such as osteoporosis or certain endocrine disorders, may not be ideal candidates for MARPE due to the potential for impaired healing or miniscrew failure. These factors underscore the importance of individualized treatment planning and interdisciplinary collaboration in complex cases.<sup>17</sup>

Despite its broad indications, MARPE is not without limitations, and patient compliance is a crucial determinant of success. The treatment involves multiple appointments for activation and monitoring, as well as potential discomfort during the early phases of expansion. Therefore, patient motivation, understanding of the procedure, and commitment to follow-up care are critical components of the selection process. The evolving indications for MARPE reflect its versatility in addressing both functional and esthetic concerns. With continued advancements in device design and a growing understanding of its biomechanical principles, MARPE has expanded the boundaries of orthodontic treatment for patients with diverse clinical needs.<sup>18</sup>

### Short-term and long-term outcomes of miniscrewassisted rapid palatal expansion

The outcomes of MARPE can be categorized into shortterm and long-term effects, with each contributing to its growing recognition as a transformative treatment approach. In the short term, MARPE delivers rapid and measurable skeletal changes, particularly in addressing transverse maxillary deficiencies. Skeletal expansion, as opposed to dental tipping commonly seen with traditional methods, is a hallmark of MARPE. Studies utilizing CBCT have consistently demonstrated a significant increase in the maxillary arch width within weeks of activation, with changes localized primarily at the skeletal level and minimal dental compensation.<sup>19</sup> This makes MARPE valuable particularly for achieving structural improvements without compromising the integrity of the supporting dentition.

Another notable short-term outcome of MARPE is the improvement in nasal airway volume. Transverse deficiencies are often accompanied by narrow nasal passages, leading to compromised breathing. The skeletal changes induced by MARPE extend to the nasal cavity, resulting in increased nasal airflow and alleviation of

symptoms associated with obstructive breathing conditions. Patients frequently report improved nasal breathing shortly after the initiation of MARPE, with studies linking these changes to a reduction in respiratory distress, particularly during sleep.<sup>20</sup> This effect highlights the dual functional and structural benefits of the procedure.

From a long-term perspective, MARPE has shown excellent stability in maintaining skeletal expansion. Follow-up studies conducted months or years posttreatment have confirmed that the achieved expansion persists with minimal relapse, particularly when patients adhere to retention protocols. The anchorage provided by the miniscrews plays a significant role in reducing the risk of relapse, as it minimizes unwanted dental movements during and after the expansion phase. Moreover, the ability of MARPE to achieve proper skeletal alignment early in treatment sets the stage for more predictable orthodontic outcomes in subsequent phases, such as aligning crowded teeth or improving bite relationships.<sup>21</sup> Another long-term benefit is the sustained improvement in airway function. Research indicates that the increases in nasal airway volume achieved through MARPE are maintained over time, contributing to better respiratory health and reduced reliance on adjunctive therapies for conditions like sleep apnea. In some cases, the procedure has eliminated the need for more invasive interventions, such as maxillofacial surgery, particularly in adult patients who were initially considered for surgical expansion.<sup>22</sup>

Despite these promising outcomes, MARPE is not without potential challenges. In the short term, patients may experience discomfort during screw insertion or activation, and transient issues such as soft tissue irritation around the screws are not uncommon. Proper placement and angulation of the screws are critical to minimizing these complications and ensuring effective force application. Long-term outcomes, while largely positive, are influenced by factors such as patient compliance with retention protocols and the presence of systemic conditions that may affect bone remodeling. Additionally, variations in individual anatomical factors, such as suture morphology and palatal vault height, can impact the overall success of the expansion and its stability over time. Studies examining the psychological and esthetic benefits of MARPE also point to its long-term value. By achieving significant skeletal changes without resorting to invasive surgical methods, MARPE offers a less intimidating and more patient-friendly option for correcting maxillary deficiencies. Patients often report improved confidence and satisfaction with their facial esthetics post-treatment. further reinforcing the procedure's role in holistic orthodontic care.

### Challenges, limitations, and complications in miniscrewassisted rapid palatal expansion

MARPE has introduced significant advancements in addressing transverse maxillary deficiencies, it is not without its challenges and potential complications. A

nuanced understanding of these issues is essential for clinicians to optimize treatment outcomes and mitigate risks. One of the primary challenges lies in the variability of patient-specific anatomy. Factors such as palatal vault height, bone density, and the proximity of vital anatomical structures like the nasal floor can significantly influence the placement and stability of the miniscrews. Patients with a shallow palatal vault or thin cortical bone may have limited options for screw placement, necessitating modifications in expander design or screw angulation. Improper placement or insufficient bone support can lead to screw loosening or failure, compromising the stability of the device and the effectiveness of the expansion.<sup>23</sup>

Another limitation is the patient's age and the degree of ossification of the midpalatal suture. While MARPE has extended the applicability of palatal expansion to adults, heavily ossified sutures in older patients can resist expansion forces, leading to incomplete or asymmetric expansion. Advanced imaging techniques, such as CBCT, are critical for assessing suture patency and planning the activation protocol. In some cases, surgical assistance may still be required to overcome severe skeletal resistance, particularly in older adults or those with significant craniofacial anomalies.<sup>24</sup>

The technical complexity of MARPE is another noteworthy challenge. Accurate placement of miniscrews demands high precision and expertise, as improper insertion can lead to complications such as perforation of the nasal floor or palatal soft tissues. Additionally, excessive force during activation can cause pain, inflammation, or trauma to the surrounding tissues. Training and experience play a critical role in ensuring that the device is installed and activated correctly. This learning curve may limit the adoption of MARPE among less experienced practitioners or in resource-constrained settings where access to advanced imaging tools and customized devices is limited.<sup>25</sup>

Patient compliance is a significant factor in the success of MARPE, particularly during the retention phase. Failure to adhere to retention protocols can result in relapse of the expansion, undermining the long-term benefits of the treatment. Moreover, discomfort during the initial phases of activation or maintenance of the device can lead to decreased patient cooperation. Some patients report transient issues such as pain, difficulty in speech, or irritation of the palatal mucosa, which may affect their willingness to continue with the treatment. Addressing these concerns through patient education and supportive care is essential for maintaining compliance and ensuring the procedure's success.

Complications associated with MARPE are generally infrequent but can be clinically significant. Miniscrew failure, which may occur due to mechanical overload, infection, or inadequate bone integration, is among the most commonly reported issues. Infections around the screw site, although rare, can result in inflammation and

discomfort, requiring prompt intervention. Furthermore, the forces generated during expansion may inadvertently affect adjacent craniofacial structures, leading to undesirable outcomes such as root resorption or changes in tooth inclination. Regular monitoring through follow-up visits and imaging is essential for identifying and managing these complications early.<sup>26</sup>

Lastly, financial and logistical considerations can present barriers to MARPE treatment. Customized expanders and the use of advanced imaging modalities contribute to higher treatment costs compared to traditional methods. For some patients, this financial burden may limit access to MARPE, particularly in regions with limited insurance coverage for orthodontic procedures. Addressing these barriers requires innovative approaches, such as simplifying device designs or integrating MARPE into broader orthodontic treatment plans to maximize its cost-effectiveness.

### **CONCLUSION**

MARPE has transformed the approach to managing transverse maxillary deficiencies, offering a viable solution for both adolescent and adult patients. Its ability to achieve significant skeletal expansion with minimal dental side effects makes it a valuable tool in orthodontic practice. Despite challenges such as anatomical variability and patient compliance, advancements in imaging and device design have improved its efficacy and safety. Continued research and clinical experience will further refine MARPE, expanding its applicability and long-term benefits.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

### REFERENCES

- 1. Handelman CS. Nonsurgical rapid maxillary alveolar expansion in adults: a clinical evaluation. Angle Orthod. 1997;67(4):291-308.
- 2. Lee K-J, Park Y-C, Park J-Y, Hwang W-S. Miniscrew-assisted nonsurgical palatal expansion before orthognathic surgery for a patient with severe mandibular prognathism. Am J Orthod Dentofac Orthop. 2010;137(6):830-9.
- 3. Lagravere MO, Major PW, Flores-Mir C. Long-term skeletal changes with rapid maxillary expansion: a systematic review. Angle Orthod. 2005;75(6):1046-52.
- 4. Ventura V, Botelho J, Machado V, Mascarenhas P, Pereira FD, Mendes JJ, et al. Miniscrew-Assisted Rapid Palatal Expansion (MARPE): An Umbrella Review. J Clin Med. 2022;11(5):1287.
- 5. Cantarella D. Minimally invasive surgery to facilitate micro-implant supported maxillary skeletal expansion in adult patients. Philosophy Doctorate (PhD) in Clinical Research; 2022.

- Tang H, Liu P, Xu Q, Hou Y, Guo J. A comparative analysis of aerodynamic and anatomic characteristics of upper airway before and after mini-implant– assisted rapid maxillary expansion. Am J Orthod Dentofac Orthop. 2021;159(4):e301-10.
- 7. Wilmes B, Nienkemper M, Drescher D. Application and effectiveness of a mini-implant-and tooth-borne rapid palatal expansion device: the hybrid hyrax. World J Orthod. 2010;11(4):323-30.
- 8. Iwasaki T, Saitoh I, Takemoto Y, Inada E, Kanomi R, Hayasaki H, et al. Improvement of nasal airway ventilation after rapid maxillary expansion evaluated with computational fluid dynamics. Am J Orthod Dentofacial Orthop. 2012;141(3):269-78.
- 9. Moon HW, Kim MJ, Ahn HW, Kim SJ, Kim SH, Chung KR, et al. Molar inclination and surrounding alveolar bone change relative to the design of bone-borne maxillary expanders: A CBCT study. Angle Orthod. 2020;90(1):13-22.
- Gautam P, Valiathan A, Adhikari R. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study. Am J Orthod Dentofac Orthop. 2007;132(1):5.
- 11. Liu S, Xu T, Zou W. Effects of rapid maxillary expansion on the midpalatal suture: a systematic review. Eur J Orthod. 2015;37(6):651-5.
- 12. Jaiswal N. Transverse maxillary deficiency correction using MARPE. J Adv Dentistry. 2022;11(2).
- Arqub SA, Mehta S, Iverson MG, Yadav S, Upadhyay M, Almuzian M. Does Mini Screw Assisted Rapid Palatal Expansion (MARPE) have an influence on airway and breathing in middle-aged children and adolescents? A systematic review. Int Orthod. 2021;19(1):37-50.
- Calvo-Henriquez C, Megias-Barrera J, Chiesa-Estomba C, Lechien JR, Maldonado Alvarado B, Ibrahim B, et al. The Impact of Maxillary Expansion on Adults' Nasal Breathing: A Systematic Review and Meta-Analysis. Am J Rhinol Allergy. 2021;35(6):923-34.
- Liao Y-C, Ho K-H, Wang C-W, Wang K-L, Hsieh S-C, Chang H-M. Skeletal and dental changes after microimplant-assisted rapid palatal expansion (MARPE)—a Cephalometric and Cone-Beam Computed Tomography (CBCT) study. Clin Investig Orthod. 2022;81(2):84-92.
- 16. Zeng W, Yan S, Yi Y, Chen H, Sun T, Zhang Y, et al. Long-term efficacy and stability of miniscrewassisted rapid palatal expansion in mid to late adolescents and adults: a systematic review and metaanalysis. BMC Oral Health. 2023;23(1):829.
- 17. Nucera R, Ciancio E, Maino G, Barbera S, Imbesi E, Bellocchio AM. Evaluation of bone depth, cortical bone, and mucosa thickness of palatal posterior

- supra-alveolar insertion site for miniscrew placement. Progress Orthod. 2022;23(1):18.
- 18. Kim H, Jo H, Cha JY, Lee KJ, Yu HS, Choi SH. Orthodontic treatment of a middle-aged patient with periodontally compromised dentition accompanied by pathologic tooth migration. Angle Orthod. 2024;94(6):678-86.
- 19. Niu X, Di Carlo G, Cornelis MA, Cattaneo PM. Three-dimensional analyses of short-and long-term effects of rapid maxillary expansion on nasal cavity and upper airway: A systematic review and meta-analysis. Orthod Craniofac Res. 2020;23(3):250-76.
- Liu C, Wang K, Jiang C, Zhao Y, Zhang Y, Zhang Q, et al. The short- and long-term changes of upper airway and alar in nongrowing patients treated with Mini-Implant Assisted Rapid Palatal Expansion (MARPE): a systematic review and meta-analysis. BMC Oral Health. 2023;23(1):820.
- 21. Viet H, Marya A, d'Apuzzo F, Nucci L. The clinical applications and outcomes of digital MARPE in orthodontics: A scoping review. Paper presented at: Seminars in Orthodontics; 2024.
- Nakra P, Shetty A, Ratti S. Skeletal Changes after Miniscrew-assisted Rapid Palatal Expansion in Young Adults: A Cone-beam Computed Tomography Technique Study. World J Dentistry. 2022;13(6):617-22.
- 23. Oliveira CB, Ayub P, Angelieri F, Murata WH, Suzuki SS, Ravelli DB, et al. Evaluation of factors related to the success of miniscrew-assisted rapid palatal expansion. Angle Orthod. 2021;91(2):187-94.
- Jia H, Zhuang L, Zhang N, Bian Y, Li S. Age-dependent effects of transverse maxillary deficiency treated by microimplant-assisted rapid palatal expansion: a prospective cone-beam computed tomography study. Am J Orthod Dentofac Orthop. 2022;161(4):557-73.
- 25. Kapetanović A, Noverraz RR, Listl S, Bergé SJ, Xi T, Schols JG. What is the oral health-related quality of life following miniscrew-assisted rapid palatal expansion (MARPE)? A prospective clinical cohort study. BMC Oral Health. 2022;22(1):423.
- Labunet A, Iosif C, Kui A, Vigu A, Sava S. Miniscrew-Assisted Rapid Palatal Expansion: A Scoping Review of Influencing Factors, Side Effects, and Soft Tissue Alterations. Biomedicines. 2024;12(11):2438.

Cite this article as: Almoabady EH, Alzamzami AA, Alrashdi TS, Mujthil KM, Almohammadi KS, Okashah YA, et al. Definition, indication and outcome of miniscrew-assisted rapid palatal expansion. Int J Community Med Public Health 2025;12:487-92.