

Review Article

DOI: <https://dx.doi.org/10.18203/2394-6040.ijcmph20250335>

Air pollution in India: a comprehensive review on impacts, challenges and mitigation strategies

Gaurav R. Naik, Anuradha K. Shah*

Department of Community Medicine, Seth G S Medical College and KEM Hospital, Mumbai, Maharashtra, India

Received: 15 November 2024

Accepted: 08 January 2025

***Correspondence:**

Dr. Anuradha K. Shah,

E-mail: anuradha.moha@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Air pollution is a significant challenge in India, driven by industrial emissions, vehicular exhaust, urbanization and biomass burning. It is linked to severe health impacts, including respiratory diseases, cardiovascular disorders and premature mortality, with marginalized communities bearing disproportionate burdens. India is home to nine of the world's ten most polluted cities, with Delhi exemplifying the crisis due to stubble burning and high vehicular density. Air pollution's economic and health costs are immense, affecting GDP and public health expenditure. Effective mitigation strategies involve technological advancements such as electric vehicles, renewable energy and IoT-enabled real-time monitoring systems. Regulatory interventions like the National Clean Air Programme (NCAP) and the adoption of Bharat Stage VI standards aim to curb pollution. International examples from China, the US and the EU provide valuable lessons on integrated policies and public participation. Future directions include leveraging AI and big data analytics for pollution management and incorporating air quality concerns into urban planning. Public awareness campaigns and grassroots movements remain essential in driving behavioral changes for sustainable practices.

Keywords: Air pollution, Public health, Mitigation strategies, National clean air programme

INTRODUCTION

Overview of air pollution in India

A rapidly developing nation, India has faced a significant challenge with escalating air pollution levels. Industrial activities, population growth, urbanization and vehicular emissions have contributed to this crisis. With nine of the world's ten most polluted cities located in India, the country grapples with severe health consequences, including chronic obstructive pulmonary diseases, influenza, bronchitis, asthma and acute respiratory infections. The degradation of air quality in many Indian cities often surpasses the standards set by the Central Pollution Control Board (CPCB) and the World Health Organization.^{1,2} India's primary sources of air pollution include emissions from industrial processes, construction

activities, vehicular exhaust and burning biomass and fossil fuels. Additionally, the widespread use of diesel generators and the burning of crop residues in agricultural regions exacerbate the problem. Human interventions globally have led to widespread air quality breaches, with nearly 99% of the global population breathing air exceeding WHO guideline limits laden with high pollutant levels.²

The issue of environmental justice also comes to the forefront, with marginalized populations, especially in poorer, coal-dependent states in eastern India, facing disproportionate impacts.³ The economic implications of air pollution are substantial. The connection between toxic air pollution, health expenditure and economic growth underscores the urgency for effective mitigation strategies.^{4,5} Air pollution significantly contributes to India's disease burden, following closely behind

malnutrition and affects the nation's overall economic development.⁵ Thus, addressing air pollution in India requires a multidisciplinary approach combining public awareness, scientific expertise and coordinated efforts by national and international organizations.⁶

Burden: the most polluted cities

India's air pollution crisis is most acute in several cities, including Delhi, Ghaziabad, Kanpur, Lucknow and Noida. These cities consistently record some of the highest levels of PM2.5 and PM10, posing severe health risks to their inhabitants. Delhi, the capital city, often garners significant attention due to its alarming air quality, which deteriorates more during winter because of factors like stubble burning in neighboring states and festive fireworks. High vehicular density, industrial emissions, construction dust and limited green cover primarily drive the severe pollution levels in these cities.⁷

Public health impact of air pollution

Air pollution poses a grave threat to public health, contributing to a multitude of health problems that affect various systems in the body. Among the most concerning effects are those on the respiratory system. Fine particulate matter (PM2.5), which can penetrate deep into the lungs, exacerbates respiratory conditions like asthma, chronic obstructive pulmonary disease (COPD), bronchitis and lung infections. Prolonged exposure to air pollution is also linked to lung cancer, as persistent inflammation and damage to lung tissues impair their function. Beyond the respiratory system, air pollution significantly impacts cardiovascular health. Pollutants such as PM2.5 and nitrogen oxides (NOx) have been shown to trigger oxidative stress and systemic inflammation, contributing to hypertension, heart attacks, ischemic heart disease and strokes. These pollutants damage the endothelial lining of blood vessels, promoting atherosclerosis and other cardiovascular diseases.⁶

Premature mortality is a striking consequence of air pollution. Globally, air pollution both outdoor and household is responsible for approximately 6.7 million premature deaths annually.² In India alone, it accounts for 1.67 million deaths, representing 17.8% of the country's total mortality.³ The financial burden imposed by the health effects of air pollution is immense, with increased healthcare costs, reduced productivity and premature deaths translating into significant economic losses. In India, the economic costs of air pollution-related health issues represent a notable proportion of the national GDP.⁴

Pregnant women exposed to high levels of air pollution face heightened risks of adverse pregnancy outcomes, including preterm birth, low birth weight and intrauterine growth restriction. Pollutants can cross the placental barrier, affecting fetal development and leading to long-term health problems in children.^{8,9} Children are

especially vulnerable to the detrimental effects of polluted air due to their developing organs and immune systems. Exposure can result in respiratory infections, hindered lung development and cognitive deficits. Children also face a heightened risk of developing chronic conditions like asthma and allergies as a result of exposure to polluted environments.^{9,10}

Furthermore, air pollution has emerged as a factor linked to mental health issues. Recent research suggests that pollutants can induce neuro-inflammation, contributing to disorders such as depression, anxiety and cognitive decline.⁶ Collaborative efforts from government agencies, healthcare providers, researchers and communities are essential to reduce air pollution and mitigate its far-reaching health impacts.⁶

Mitigation strategies

Effective mitigation strategies require a combination of technological, regulatory and behavioral approaches. Various strategies have been adopted worldwide, offering valuable lessons for India.

Technological interventions

Emission standards

Countries like the United States and those in the European Union have implemented stringent emission standards for vehicles and industries. The introduction of Bharat Stage VI (BS-VI) emission norms in India, equivalent to Euro VI standards, aims to reduce vehicular emissions significantly.¹¹

Renewable energy

Promoting renewable energy sources such as solar, wind and hydroelectric power can reduce dependence on fossil fuels, thereby decreasing air pollution. Germany's Energiewende initiative is a notable example of a successful transition to renewable energy.¹²

Electric vehicles (EVs)

The adoption of electric vehicles can significantly reduce emissions from the transportation sector. Countries like Norway have achieved remarkable success in EV adoption through incentives and infrastructure development. India has launched the Faster Adoption and Manufacturing of Hybrid and Electric Vehicles (FAME) scheme to promote EVs.¹¹

Regulatory measures

Air quality monitoring

Establishing robust air quality monitoring networks is essential for effective pollution management. The United States Environmental Protection Agency (EPA) operates

an extensive air quality monitoring system. India has expanded its monitoring network under the National Clean Air Programme (NCAP).¹³

Pollution control policies

The implementation of policies such as the Clean Air Act in the United States has led to significant reductions in air pollution levels. The European Union's Ambient Air Quality Directives set stringent air quality standards and have contributed to improved air quality across member states.¹⁴

Public awareness campaigns

Raising public awareness about the health risks of air pollution and promoting sustainable practices can drive behavioral changes. Initiatives like the "Smog Free Tower" project in the Netherlands and China's "Blue Sky Protection Campaign" have successfully engaged the public in air quality improvement efforts.¹⁰

Green spaces

Increasing green cover in urban areas can help mitigate air pollution by acting as natural filters. Cities like Singapore and Tokyo have invested in creating green spaces and vertical gardens to enhance air quality.¹²

Global examples and learnings

China

China's Air Pollution Prevention and Control Action Plan, launched in 2013, includes shutting down polluting factories, promoting clean energy and enhancing air quality monitoring. These efforts have led to significant improvements in air quality in major cities like Beijing.¹⁵

United States

The Clean Air Act, enforced by the EPA, has been instrumental in reducing air pollution levels in the United States. The Act sets national air quality standards and regulates emissions from various sources, including industries and vehicles.⁶ Key provisions of the Act include the establishment of National ambient air quality standards (NAAQS), State Implementation Plans (SIPs) and the New Source Performance Standards (NSPS). These measures have led to substantial decreases in pollutants such as sulfur dioxide (SO₂), nitrogen oxides (NO_x) and particulate matter, improving air quality and public health.⁶

European union

The European union's ambient air quality directives (AAQD) mandate member states to monitor and report air quality, develop air quality plans and implement measures to reduce pollution levels thereby focusing on

reducing industry emissions, transportation and agriculture emissions. The EU has also promoted renewable energy and energy efficiency measures to improve air quality. Initiatives such as the European Green Deal aim to achieve net-zero greenhouse gas emissions by 2050, further enhancing air quality.¹⁶

Japan

Japan has been a leader in combating air pollution through various innovative measures. As a partner of the Climate and Clean Air Coalition (CCAC) since 2012, Japan has focused on reducing short-lived climate pollutants (SLCPs) by promoting energy efficiency and lifecycle management of hydrofluorocarbons (HFCs).

Along with initiatives like the zero emissions Tokyo strategy, a plan to spend more than 74.6 billion Yen in the 2020 financial year to achieve net-zero carbon emissions and reduce other short-lived climate pollutants through measures such as eliminating marine plastic waste and food waste.¹⁷

India's initiatives

NCAP

Launched in 2019, the NCAP aims to reduce particulate matter (PM_{2.5} and PM₁₀) concentrations by 20-30% by 2024. The program includes expanding the air quality monitoring network, promoting clean energy and encouraging public participation.^{13,18}

Clean air fund

India has established the clean air fund to finance projects aimed at improving air quality. The fund supports initiatives such as afforestation, waste management and the adoption of clean technologies.¹⁹

System of air quality and weather forecasting and research portal

It is a real-time air quality monitoring system developed by the Indian Institute of Tropical Meteorology (IITM) under the Ministry of Earth Sciences. SAFAR provides accurate forecasts of air quality, up to three days in advance, along with weather predictions for major Indian cities.²⁰

BS-VI vehicles to reduce vehicular pollution

In 2020, India leapfrogged from Bharat Stage IV (BS-IV) to Bharat Stage VI (BS-VI) vehicle emission standards. These standards, equivalent to Euro VI, impose strict regulations on emissions from vehicles, focusing on reducing nitrogen oxides (NO_x) and particulate matter emissions. The introduction of BS-VI-compliant vehicles is a key step in reducing vehicular pollution, especially in

urban areas where traffic is a significant source of air pollution

City-specific plans

Several Indian cities, including Delhi and Mumbai, have developed action plans to combat air pollution. These plans focus on reducing emissions from vehicles, industries and construction activities, which include a Graded Response Action Plan (GRAP) and Commission for Air Quality Management (CAQM).^{13,18}

FUTURE SCOPE

The future of air pollution management in India holds significant potential through the use of advanced technologies. IoT devices are at the forefront of this transformation, enabling continuous real-time air quality monitoring. Sensors across urban, industrial and residential areas can collect data on pollutant levels, providing a comprehensive and dynamic picture of air quality. This data then helps us to identify pollution hotspots and track pollution trends, while also evaluating the effectiveness of intervention measures. By leveraging this network of devices, it becomes possible to take proactive measures to address pollution before it worsens. This vast amount of information can be processed by big data analytics.⁵

Thus, with advanced algorithms and big data analytics, it is possible to delve into the complexities of pollution patterns, later pinpoint key sources of emissions and even predict pollution episodes based on environmental factors like weather and traffic. The insights drawn from this data empower policymakers to make informed decisions and implement targeted actions that directly tackle pollution sources.

Artificial intelligence plays a complementary role by optimizing pollution management processes as well. For example, AI can improve traffic flow by regulating traffic signals to reduce congestion and lower vehicular emissions. Moreover, predictive models driven by AI can forecast pollution levels, allowing authorities to take preemptive measures, especially during critical periods, such as festival seasons or during agricultural burning.

By incorporating air quality concerns into smart city initiatives, cities can optimize traffic management, promote green building technologies and invest in renewable energy solutions. These efforts enhance the overall quality of life for city dwellers.¹² Mobile applications can send real-time air quality updates, individuals can make informed decisions about their daily activities, avoiding outdoor exposure during high pollution periods and adopting practices such as using public transportation. Public participation is essential, as grassroots movements and citizen science initiatives can complement government efforts by raising awareness and driving policy change. Engaging the public can also

promote behavioral shifts, such as reducing vehicle usage and adopting more sustainable practices.⁴ Strengthening existing policies and introducing new regulations are equally critical. This includes setting more ambitious emission targets, enforcing stringent standards for vehicles and industries and promoting the adoption of clean energy. Collaboration among government agencies, industries, academia and civil society is essential to develop comprehensive strategies that effectively address air pollution.⁹

Moreover, air pollution and climate change are closely linked and integrated policies can thus support sustainable development, benefiting public health and the environment. Policymakers must consider the financial advantages when designing air quality regulations, ensuring that cleaner air translates into a stronger, healthier economy. While these solutions may require significant initial investment, the long-term benefits, such as reduced healthcare costs and increased productivity, make them well worth the effort. Policymakers must prioritize these advantages to ensure that cleaner air contributes to a healthier and stronger economy.

CONCLUSION

Air pollution in India severely threatens public health, the environment and the economy. The country's rapidly growing population, industrial activities and urbanization have exacerbated the problem, leading to some of the highest pollution levels in the world. Addressing this crisis requires a multidisciplinary approach that combines technological, regulatory and behavioral interventions.

India can learn valuable lessons from global examples of successful air quality management. Technological advancements, such as IoT, big data analytics and AI offer promising solutions for real-time monitoring and mitigating pollution. Engaging the public, strengthening policies and integrating air quality management with climate change initiatives are essential for achieving sustainable improvements in air quality. Ultimately, combating air pollution in India necessitates coordinated efforts from all stakeholders, including government agencies, industry, academia and the public. By adopting a comprehensive and integrated approach, India can protect public health, preserve the environment and promote sustainable economic development.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Pandey A, Brauer M, Cropper ML, Balakrishnan K, Mathur P, Dey S, et al. Health and economic impact of air pollution in the states of India: the global burden of disease study 2019. *The Lancet Planetary Health.* 2021;5(1):25-38.

2. Air pollution. Available at: <https://www.who.int>. Accessed on 21 August 2024.
3. Souza PN, Chaudhary E, Dey S, Ko S, Németh J, Guttikunda S, et al. An environmental justice analysis of air pollution in India. *Scientific reports.* 2023;13(1):16690.
4. Vyas V, Mehta K, Sharma R. The nexus between toxic-air pollution, health expenditure and economic growth: An empirical study using ARDL. *Int Rev Econ Financ.* 2023;84:154–66.
5. Bagepally BS, Rakesh B. Air pollution attributed disease burden and economic growth in India: estimating trends and inequality between states. *The Lancet Regional Health-Southeast Asia.* 2022;1:7.
6. Manalisidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. *Frontiers in Public Health.* 2020;8:14.
7. Dutta A, Jinsart W. Air pollution in Delhi, India: It's status and association with respiratory diseases. *PLoS One.* 2022;17(9):274444.
8. Pandey A, Brauer M, Cropper ML, Balakrishnan K, Mathur P, Dey S, et al. Health and economic impact of air pollution in the states of India: The Global Burden of Disease Study 2019. *Lancet Planet Heal.* 2021;5(1):25.
9. Pandey A, Brauer M, Cropper ML, Balakrishnan K, Mathur P, Dey S, et al. Health and economic impact of air pollution in the states of India: The Global Burden of Disease Study 2019. *Lancet Planet Heal.* 2021;5(1):25–38.
10. Kaur R, Pandey P. Air Pollution, Climate Change and Human Health in Indian Cities: A Brief Review. *Front Sustain Cities.* 2021;3:705131.
11. Purohit P, Amann M, Kiesewetter G, Rafaj P, Chaturvedi V, Dholakia HH, et al. Mitigation pathways towards national ambient air quality standards in India. *Environ Int* 2019;133:105147.
12. Sofia D, Gioiella F, Lotrecchiano N, Giuliano A. Mitigation strategies for reducing air pollution. *Environ Sci Pollut Res.* 2020;27(16):19226–35.
13. Developing Strategies for Control of Air Pollution in India and its Cities. TERI. 2023. Available at: <https://www.teriin.org/project>. Accessed on 21 August 2024.
14. Managing air quality in Europe-European Environment Agency. Available at: <https://www.eea.europa.eu>. Accessed on 19 August 2024.
15. Feng T, Sun Y, Shi Y, Ma J, Feng C, Chen Z. Air pollution control policies and impacts: A review. *Renew Sustain Energy Rev.* 2024;191:114071.
16. World Health Organization. Air quality guidelines for Europe. World Health Organization. Regional Office for Europe; 2000.
17. Japan, climate & clean air coalition. Available at: <https://www.ccacoalition.org/partners/japan>. Accessed 21 August 2024.
18. Air pollution in India: major issues and challenges. TERI. Available at: <https://www.teriin.org/article>. Accessed on 18 August 2024.
19. Pollution. 2021. Available at: <https://www.worldbank.org>. Accessed on 12 August 2024.
20. Tracing the Hazy Air: Progress Report on National Clean Air Programme (NCAP) – Centre for Research on Energy and Clean Air. 2024. Available at: <https://energyandcleanair.org>. Accessed on 22 August 2024.

Cite this article as: Naik GR, Shah AK. Air pollution in India: a comprehensive review on impacts, challenges and mitigation strategies. *Int J Community Med Public Health* 2025;12:1136-40.