Prevalence and risk factors of urinary incontinence during antenatal period in women delivering in a tertiary care center of Northern India

Bhanu Priya1*, Nilanchali Singh2, Shalini Rajaram1

Department of Obstetrics and Gynecology, Guru Teg Bahadur Hospital, New Delhi, Maulana Azad Medical Hospital, Delhi, India

Received: 10 April 2017
Revised: 01 May 2017
Accepted: 04 May 2017

*Correspondence:
Dr. Bhanu Priya,
E-mail: drpriyabhanu@gmail.com

ABSTRACT

Background: Urinary incontinence (UI) is a commonly encountered entity in antenatal and postpartum period. It is known to have detrimental effects on quality of life in approximately 54.3% of all pregnant women. However, the true prevalence of UI is still not known, especially in the South East Asia. This study has investigated the prevalence and risk factors of urinary incontinence during antenatal period.

Methods: 500 women admitted in postnatal ward were interviewed retrospectively about the UI occurred during antenatal period, using questionnaire. The study was done over a period of six months. Detailed information regarding risk factors of urinary incontinence was included in questionnaire based on previous validated studies. Data was analyzed using SPSS 20 using chi square test. P value <0.05 was taken as significant.

Results: Total 500 women were interviewed and based on questionnaire. 202 reported incontinence, thus giving a prevalence of 40.4%, out of that 192 (45.5%) had stress urinary incontinence (SUI), 40(19.8%) had urge urinary incontinence (UUI) and 70 (34.6%) had mixed incontinence. The risk factors like bladder infections and chronic cough had significant association with urinary incontinence. Advancing gestation had worsening effects on the symptoms of UI (p =0.000).

Conclusions: Urinary incontinence is a common and neglected problem with poor treatment seeking behavior. SUI is more common in pregnant women than urge or mixed incontinence. Obstetricians need to ask have precise interrogation regarding UI in pregnant women to diagnose and treat the problem.

Keywords: Prevalence, Risk factors, Urinary incontinence, Questionnaire, Treatment seeking behavior

INTRODUCTION

Urinary incontinence (UI) is a significant health concern and has been shown to impair women’s activities and also affects the physical and mental health.1 UI is higher in few specific groups like pregnancy and have been reported a prevalence of 32%-64% for all UI and 59% for stress urinary incontinence (SUI) and 40% for mixed incontinence.2 Women with UI have poorer treatment seeking behavior for UI. Approximately 54.3% of all pregnant women have detrimental effects on quality of life.3 Pregnancy is an independent risk factor for UI that leads to weakened pelvic floor muscle because of pregnancy related physiological and anatomical changes. However, despite the multiple references in literature on effects of, parity, age of women, pathophysiological changes in pregnancy and mode of delivery, on the pelvic floor and lower urinary tract symptoms remain inconclusive.4

Prenatal physiological changes such as increasing pressure of the advancing gravid uterus and growing fetal weight on pelvic floor muscle (PFM) throughout the pregnancy, along with the pregnancy-related changing
levels of hormones such as progesterone, estrogen, and relaxin, may lead to reduced strength and sphincteric function of PFM. PFM weakness causes bladder-neck and urethral hypermobility, leading to urethral sphincter incompetence. Hence, when intra-abdominal pressure is increased with coughing, sneezing, laughing, or moving, the pressure inside the bladder exceeds the urethral closure pressure and the urethral sphincter is not strong enough to maintain urethral closure. Urinary leakage will be the result. SUI is common during pregnancy and puerperium. After delivery, SUI symptoms resolve in the vast majority of cases. The healing process may take some time after the delivery, but in a significant percentage of women, it can persist in subsequent stages of life. In primipara women, SUI symptoms tend to resolve within 3 month after delivery.

Multiple risk factors have been associated with UI. Significant risk factors for UI in pregnancy were maternal age ≥35 years, body mass index and parity. Smoking, diabetes, chronic cough and high intake of caffeine are identifiable risk factors for UI.

The information available on UI in postpartum women from India is sparse. Therefore, a study on UI is designed which would add information regarding prevalence of UI in this part of world as incidence and prevalence estimates of incontinence vary widely. Only a few population based studies have investigated prevalence of urinary incontinence during pregnancy by type and severity. Also, data on risk factors for incontinence in pregnancy are scarce.

METHODS

This observational study was carried out over six weeks in the department of obstetrics and gynecology, at a tertiary care hospital in Northern India. All the healthy postpartum women admitted in the post natal ward, who had singleton pregnancy, were included in the study. Total 500 subjects were included in the study. Informed consent was obtained from the participants prior to conducting the study and the women were interviewed about the given questionnaire. The study was done over a period of six months from March 2016 to September 2016. Urinary incontinence was assessed using standardized questions based on questions validated in previous studies. The questionnaire covered the risk factors, symptoms and severity of the UI. Women who had leakage of urine at least once a month, regardless of amount were defined as UI. Women were defined as having stress urinary incontinence if leakage of urine was associated with coughing, laughing, sneezing or physical activity, urge incontinence, if leakage was preceded or accompanied by urgency, and mixed incontinence when symptoms of both stress (SUI) and urge (UUI). These definitions follow the standardized terminology for lower urinary tract symptoms endorsed by the International Continence Society. Severity of UI was assessed as slight, moderate or severe based on the frequency and amount of leakage using the incontinence severity index. The questionnaire was used to gather information about socio-demographic pattern, predisposing and risk factors, treatment seeking behavior including the prevalence of UI.

Data analysis was done using SPSS version 20. Odd’s ratio and chi-square test was used for univariate analysis.

RESULTS

During the study, 500 women were interviewed. The mean age of study population was 25.1 years with a range of 19-40 years. The demographic characteristics like age, weight, height, BMI, parity and past delivery mode were not found to have a significant association with UI (Table 1).

Table 1: Study group characteristics.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Group I (n=202) (incontinence present)</th>
<th>Group II (n=298) (incontinence absent)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>25.1±3.2</td>
<td>24.9±3.6</td>
<td>0.703</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>57.7±5.0</td>
<td>57.6±5.1</td>
<td>0.912</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>151.7±5.0</td>
<td>151.9±5.2</td>
<td>0.815</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.9±2.3</td>
<td>25.0±2.1</td>
<td>0.886</td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primipara</td>
<td>81</td>
<td>104</td>
<td>0.294</td>
</tr>
<tr>
<td>Multipara</td>
<td>163</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Past delivery mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No past delivery</td>
<td>91</td>
<td>86</td>
<td>0.535</td>
</tr>
<tr>
<td>Previous normal delivery</td>
<td>126</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Previous cesarean section</td>
<td>76</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Bladder habits alteration</td>
<td>371</td>
<td>129</td>
<td>0.187</td>
</tr>
<tr>
<td>Caffeine intake</td>
<td>203</td>
<td>297</td>
<td>1.000</td>
</tr>
<tr>
<td>Bladder infection</td>
<td>40</td>
<td>460</td>
<td>0.013</td>
</tr>
<tr>
<td>Pelvic pain</td>
<td>35</td>
<td>465</td>
<td>0.405</td>
</tr>
<tr>
<td>Chronic cough</td>
<td>48</td>
<td>452</td>
<td>0.001</td>
</tr>
<tr>
<td>Constipation</td>
<td>11</td>
<td>489</td>
<td>0.15</td>
</tr>
</tbody>
</table>
The treatment seeking behavior was not related to severity of UI. A moderate treatment seeking behavior was reported in literature. Though and bladder infection and bladder infections had significant association with UI. In the study chronic cough (p=0.001) and bladder infections (p=0.013) had significant association with UI. Table 2 shows p value and odds ratio for the risk factors.

In this study, sociodemographic pattern did not have any association with UI. Chronic cough and bladder infections had significant relation with UI. After univariate analysis the Odd’s ratio for UI in subjects with chronic cough and bladder infections was 4-5 times more. Chronic cough itself has direct association with UI. Chronic cough and bladder infections was 4-5 times more.

The prevalence of incontinence in primipara was slightly higher than previously reported in literature. In our study 53.4% multipara had incontinence which shows that parity has association with incontinence but it was not stastically significant.

In our study was 40.4% which is in the range of the previous study in literature. In our study 53.4% multipara had incontinence which shows that parity has association with incontinence but it was not stastically significant.

The prevalence of incontinence in primipara was slightly higher than previously reported in literature. In our study 53.4% multipara had incontinence which shows that parity has association with incontinence but it was not stastically significant.

The sample size of 500 participants were included in the study. Out of 500, 185 women were primipara and 315 women were multipara. Out of 185 primipara, 81 subjects reported incontinence. The prevalence of incontinence was 43.7% in primipara. Similarly, 315 multipara took part in the study and 163 had incontinence which gives a prevalence of 53.4% in multipara women.

In the study population chronic cough (p=0.001) and bladder infections (p=0.013) had significant association with UI. Table 2 shows p value and odds ratio for the risk factors.

The women in India are suffering from unawareness about pelvic floor muscle exercise during and after pregnancy. The prevalence of incontinence in primipara was slightly higher than previously reported in literature. In our study 53.4% multipara had incontinence which shows that parity has association with incontinence but it was not stastically significant.

The study population was limited to our tertiary care center. Also, none of the subjects was examined gynaecologically for UI and UI was only inquired verbally which may reduce the accuracy of diagnosis.

CONCLUSION

A significant number of antenatal women are suffering from UI and it is substantially affecting the quality of life. The women in India are suffering from unawareness about the condition, hence making it difficult to diagnose for physician and further early treatment. Primary prevention of UI is needed by increasing public awareness about pelvic floor muscle exercise during and after pregnancy.

REFERENCES

