Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20242575

Managing dental and skeletal development in patients with hemifacial microsomia

Ghadeer Z. Alshehri*, Sakinah M. Almusharraf, Hajer H. Almutairi, Ebtehal L. Alshammari

Dental Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

Received: 01 August 2024 Revised: 12 August 2024 Accepted: 20 August 2024

*Correspondence: Dr. Ghadeer Z. Alshehri, E-mail: Galshehri9@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Hemifacial microsomia (HFM) is a congenital condition characterized by the underdevelopment of one side of the face, impacting the ear, mouth, and jaw areas. This anomaly, second only to cleft lip and palate in prevalence, presents significant challenges in dental and skeletal development. Early diagnosis, primarily through advanced imaging techniques such as 3D computed tomography (CT) scans and magnetic resonance imaging (MRI), is crucial for identifying the extent of anomalies and planning effective interventions. The condition involves complex dental issues including malocclusion, missing teeth, and delayed dental eruption, necessitating early and targeted orthodontic treatments. Functional appliances, space maintainers, and braces are commonly used to guide dental arch development and correct alignment, leveraging the natural growth phase of the patient. Surgical interventions play a pivotal role in managing severe skeletal deformities. Preventive strategies, including regular dental check-ups, proper oral hygiene practices, and preventive treatments such as fluoride applications and dental sealants, are vital in minimizing complications and ensuring long-term oral health. Educating patients and their families on the importance of oral hygiene and routine dental care is crucial for maintaining dental health and preventing future issues. Continuous monitoring and follow-ups allow for timely adjustments to treatment plans, enhancing the effectiveness of interventions and supporting optimal growth and development. Overall, the management of dental and skeletal anomalies in hemifacial microsomia involves a combination of early diagnosis, orthodontic and surgical treatments, and preventive care, all of which are integral to improving outcomes and quality of life for affected individuals.

Keywords: Hemifacial microsomia, Dental anomalies, Orthodontic treatment, Surgical interventions, Preventive care

INTRODUCTION

Hemifacial microsomia (HFM) is a congenital condition characterized by underdevelopment of the tissues on one side of the face, primarily affecting the ear, mouth, and jaw areas. This condition is the second most common congenital craniofacial anomaly after cleft lip and palate, with an estimated incidence of 1 in 3,500 to 1 in 5,600 live births. The etiology of HFM is multifactorial, involving both genetic and environmental factors, and it often presents a complex clinical challenge due to the variability in severity and the multiple structures involved. ²

Dental and skeletal abnormalities are significant components of HFM, necessitating a multidisciplinary approach for effective management. Dental anomalies commonly associated with HFM include missing teeth, malocclusion, and delayed dental development. Skeletal deformities primarily involve the mandible and maxilla, leading to facial asymmetry and functional impairments such as difficulties in chewing, swallowing, and speaking.³ These anomalies not only affect physical appearance but also have psychosocial implications, particularly in children, impacting their self-esteem and social interactions.⁴ The management of HFM requires early diagnosis and intervention to address the developmental

issues and improve the quality of life for affected individuals. Early intervention is crucial as it can significantly influence the growth patterns and mitigate the severity of deformities. The role of imaging techniques, such as panoramic radiographs and 3D computed tomography (CT) scans, is indispensable in the early diagnosis and planning of treatment strategies. These diagnostic tools help in assessing the extent of the deformities and in formulating individualized treatment plans.

Orthodontic treatment plays a vital role in managing dental anomalies in patients with HFM. It involves the use of appliances to correct malocclusion and to guide the proper alignment of teeth. In some cases, orthodontic interventions are necessary before surgical procedures to prepare the dental arches and optimize the outcomes of skeletal corrections.³ Surgical interventions, on the other hand, are primarily aimed at addressing skeletal deformities. Techniques such as distraction osteogenesis and orthognathic surgery are commonly employed to correct mandibular hypoplasia and to restore facial symmetry.²

Preventive strategies and long-term management are equally important in HFM. Regular follow-ups and continuous monitoring are essential to track the growth and development of the craniofacial structures. Preventive dental care, including proper oral hygiene practices and timely dental check-ups, is crucial in minimizing the risk of dental complications.⁴ Moreover, the involvement of a multidisciplinary team, including orthodontists, oral and maxillofacial surgeons, pediatricians, and speech therapists, ensures a comprehensive approach to the treatment of HFM, addressing both the functional and aesthetic concerns of the patients. Managing dental and skeletal development in patients with hemifacial microsomia requires a well-coordinated, multidisciplinary approach. Early diagnosis, timely orthodontic and surgical interventions, and preventive strategies are key components in improving the outcomes and quality of life for affected individuals.

REVIEW

The management of dental and skeletal development in patients with HFM involves addressing both functional and aesthetic challenges. Dental anomalies, such as malocclusion and missing teeth, require early and targeted orthodontic interventions. These interventions not only improve dental alignment but also prepare the patient for potential surgical procedures. Orthodontic treatments, including braces and other corrective appliances, are essential in guiding the growth and development of dental structures, thereby enhancing both function and appearance.⁵

Surgical interventions play a crucial role in correcting skeletal deformities associated with HFM. Techniques such as distraction osteogenesis have been shown to be effective in elongating the mandible and restoring facial symmetry. This procedure involves the gradual stretching of bone to promote new bone growth, offering significant improvements in both the aesthetics and functionality of the jaw.⁶ Additionally, orthognathic surgery is often employed to reposition the jaws, further contributing to facial balance and symmetry.

A multidisciplinary approach is vital for the successful management of HFM. This includes collaboration among orthodontists, surgeons, pediatricians, and speech therapists to address the comprehensive needs of the patient. Regular follow-ups and continuous monitoring are essential to ensure optimal outcomes and to adjust treatment plans as necessary based on the patient's growth and development.

Early diagnosis and preventive strategies

Early diagnosis and preventive strategies are pivotal in managing HFM to mitigate the severity of deformities and improve long-term outcomes. Timely identification of the condition allows for the implementation of interventions that can positively influence the growth patterns of affected craniofacial structures. The initial diagnosis of HFM typically involves a thorough clinical examination and the use of imaging techniques. Advanced imaging modalities such as 3D CT scans and magnetic resonance imaging (MRI) provide detailed views of the craniofacial anomalies, enabling precise assessment and planning of treatment strategies. These imaging tools are crucial in identifying the extent of skeletal and soft tissue involvement, which is essential for formulating a comprehensive treatment plan.

Genetic counseling and screening also play an important role in the early diagnosis of HFM. Since the condition can have a genetic component, understanding the genetic basis can help in predicting the occurrence in families with a history of craniofacial anomalies. Genetic screening can aid in early detection, allowing for proactive management and counseling of affected families.⁸ Preventive strategies in HFM focus on minimizing the impact of dental and skeletal deformities through early interventions. For instance, early orthodontic treatments can guide the development of dental arches and improve occlusion. These treatments often involve the use of space maintainers and functional appliances to address malocclusion and ensure proper alignment of the teeth. 9 By intervening early, orthodontists can help in reducing the severity of dental anomalies and prepare the patient for potential surgical interventions.

Nutritional management is another critical aspect of preventive care in HFM. Ensuring adequate nutrition supports the overall growth and development of the child, which is particularly important given the potential feeding difficulties associated with craniofacial anomalies. Speech therapy may also be initiated early to address any speech and swallowing difficulties, which are common in children

with HFM due to asymmetries in the oral and pharyngeal structures. Regular monitoring and follow-ups are essential components of preventive care. Continuous evaluation allows healthcare providers to adjust treatment plans as the child grows, ensuring that interventions are timely and effective. This multidisciplinary approach, involving orthodontists, maxillofacial surgeons, pediatricians, speech therapists, and nutritionists, is vital in providing comprehensive care and improving the quality of life for patients with HFM.

Early diagnosis and preventive strategies are fundamental in managing HFM. Through the use of advanced imaging, genetic screening, early orthodontic and nutritional interventions, and regular follow-ups, healthcare providers can significantly influence the developmental trajectory of affected individuals, leading to improved functional and aesthetic outcomes.

Management of dental anomalies in hemifacial microsomia

The management of dental anomalies in HFM requires a comprehensive approach to address the unique challenges posed by this congenital condition. Dental anomalies in HFM include a wide range of issues such as malocclusion, missing teeth, delayed eruption, and asymmetrical dental arches. Effective management involves a combination of early intervention, orthodontic treatment, and surgical procedures, tailored to the individual needs of the patient.

Early diagnosis and intervention are crucial for managing dental anomalies in HFM. Identifying dental issues at an early stage allows for timely orthodontic interventions, which can guide the development of the dental arches and prevent more severe complications. Pediatric dentists play a critical role in the early detection and management of dental anomalies, often initiating treatment plans that include the use of space maintainers and other appliances to ensure proper alignment and spacing of the teeth.⁹⁻¹¹ Orthodontic treatment is a fundamental aspect of managing dental anomalies in HFM. The use of functional appliances, such as palatal expanders and headgear, helps to correct skeletal discrepancies and guide jaw growth. These devices are particularly effective when used during the growth phase of the patient, allowing for natural development to be harnessed in achieving better alignment and occlusion.¹²

Fixed appliances, including braces, are employed to address malocclusion and misaligned teeth. The orthodontic treatment plan is typically phased, with initial interventions focusing on creating a favorable environment for permanent teeth eruption, followed by comprehensive orthodontic treatment to correct alignment and occlusion.

In more severe cases, surgical interventions may be necessary to address dental anomalies. Surgical procedures such as bone grafting, tooth extraction, and the placement of dental implants are common in the management of

HFM. These interventions aim to correct the underlying skeletal deformities and provide a stable foundation for dental restoration. Orthognathic surgery, which involves repositioning the jaws, is often required to achieve facial symmetry and improve occlusal function. This surgery is usually performed in conjunction with orthodontic treatment to ensure optimal outcomes.13 multidisciplinary approach is essential in managing dental anomalies in HFM. Collaboration among orthodontists, oral and maxillofacial surgeons, pediatric dentists, speech therapists, and other healthcare professionals ensures that all aspects of the patient's condition are addressed. This team-based approach allows for comprehensive treatment planning and continuous monitoring, which are critical for achieving successful outcomes.

Preventive dental care is also a vital component of managing dental anomalies in HFM. Regular dental checkups, proper oral hygiene practices, and preventive treatments such as fluoride applications and dental sealants are essential in maintaining oral health. Educating patients and their families about the importance of oral hygiene and routine dental care is crucial for preventing complications and ensuring long-term dental health.⁵ The management of dental anomalies in HFM involves a combination of early intervention, orthodontic treatment, surgical procedures, and preventive care. A multidisciplinary approach, tailored to the individual needs of the patient, is essential for achieving the best possible outcomes and improving the quality of life for individuals with HFM.

Surgical interventions for skeletal deformities

Management of dental anomalies in HFM involves addressing the intricate dental and skeletal discrepancies that are characteristic of this condition. A tailored approach, combining early diagnosis, orthodontic treatment, and surgical interventions, is essential for effective management. Early diagnosis is a cornerstone in managing HFM-related dental anomalies. Pediatric dentists and orthodontists play a pivotal role in identifying dental issues early on. Diagnostic tools such as panoramic radiographs and 3D imaging provide detailed insights into the extent of dental and skeletal abnormalities, enabling clinicians to devise comprehensive treatment plans. ¹⁴ Early intervention is crucial in preventing the progression of dental malformations and optimizing growth and development.

Orthodontic treatment is a primary method for managing dental anomalies in HFM. The use of functional appliances, such as palatal expanders and mandibular advancement devices, helps correct skeletal discrepancies and guide jaw growth. These appliances are particularly effective during the patient's growth phase, allowing natural development processes to be utilized in achieving better alignment and occlusion. ¹⁵ Fixed orthodontic appliances, including braces, are employed to correct malocclusion and ensure proper dental alignment. The treatment typically proceeds in phases, starting with early

interventions to create a favorable environment for permanent teeth eruption and followed by comprehensive orthodontic treatment to correct alignment issues.

Surgical interventions are often necessary to address severe dental and skeletal anomalies. Procedures such as bone grafting, tooth extraction, and dental implant placement are common in HFM management. These surgical interventions aim to correct underlying skeletal deformities and provide a stable foundation for dental restoration. Distraction osteogenesis is a technique frequently used to lengthen the mandible and correct asymmetry, involving gradual bone stretching to promote new bone formation. ¹⁶

Orthognathic surgery, which involves repositioning the jaws, is sometimes required to achieve facial symmetry and improve occlusal function. These surgeries are typically coordinated with orthodontic treatments to ensure the best functional and aesthetic outcomes.

A multidisciplinary approach is essential in managing dental anomalies in HFM. Collaboration among various specialists, including orthodontists, oral and maxillofacial surgeons, pediatric dentists, and speech therapists, ensures that all aspects of the patient's condition are addressed comprehensively. This team-based approach facilitates continuous monitoring and timely adjustments to treatment plans, which are critical for successful outcomes. Preventive dental care is also a critical component of managing HFM-related dental anomalies. Regular dental check-ups, proper oral hygiene practices, and preventive treatments such as fluoride applications and dental sealants are essential in maintaining oral health. Educating patients and their families about the importance of oral hygiene and routine dental care is crucial in preventing complications and ensuring long-term dental health.¹⁶

The management of dental anomalies in HFM requires a multifaceted approach involving early diagnosis, orthodontic treatment, surgical interventions, and preventive care. A multidisciplinary team is essential for providing comprehensive and effective management, ultimately improving the quality of life for patients with HFM.

CONCLUSION

Managing dental anomalies in HFM necessitates early diagnosis, multidisciplinary collaboration, and a combination of orthodontic and surgical interventions. These comprehensive strategies ensure improved functional and aesthetic outcomes for affected individuals. Continuous monitoring and preventive care are essential for long-term success.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Taiwo A. Classification and management of hemifacial microsomia: a literature review. Ann Ibadan Postgrad Med. 2020;18(1):S9.
- 2. Grayson B, Cutting C, Bookstein FL, Kim H, McCarthy JG. The three-dimensional cephalogram: Theory, techniques, and clinical application. Am J Orthodont Dentofac Orthop. 1988;94(4):327-37.
- 3. Longacre J. The surgical management of mandibulofacial dysostosis. J de Genetique Humaine. 1964;13:351-84.
- 4. Birgfeld CB, Heike C. Craniofacial microsomia. Paper presented at: Seminars in plastic surgery. 2012.
- Meazzini MC, Mazzoleni F, Canzi G, Bozzetti A. Mandibular distraction osteogenesis in hemifacial microsomia: long-term follow-up. J Cranio-Maxillofac Surg. 2005;33(6):370-6.
- 6. Satoh K, Suzuki T, Uemura T, Hosaka Y. Maxillomandibular distraction osteogenesis for hemifacial microsomia in children. Ann Plast Surg. 2002;49(6):572-8.
- 7. Kusnoto B, Figueroa AA, Polley JW. A longitudinal three-dimensional evaluation of the growth pattern in hemifacial microsomia treated by mandibular distraction osteogenesis: a preliminary report. J Craniofac Surg. 1999;10(6):480-6.
- 8. Monahan R, Seder K, Patel P, Alder M, Grud S, O'GARA M. Hemifacial microsomia: etiology, diagnosis and treatment. J Am Dent Assoc. 2001;132(10):1402-8.
- 9. Cassi D, Magnifico M, Gandolfinini M, Kasa I, Mauro G, Di Blasio A. Early orthopaedic treatment of hemifacial microsomia. Case Rep Dentistry. 2017;2017(1):7318715.
- 10. Seow W. Diagnosis and management of unusual dental abscesses in children. Aust Dent J. 2003;48(3):156-68.
- 11. Stovin JJ, Lyon Jr JA, Clemmens RL. Mandibulofacial dysostosis. Radiology. 1960;74(2):225-31.
- 12. Chin M, Toth BA. Distraction osteogenesis in maxillofacial surgery using internal devices: review of five cases. J Oral Maxillofac Surg. 1996;54(1):45-53.
- 13. Kahl-Nieke B, Fischbach R. Effect of early orthopedic intervention on hemifacial microsomia patients: an approach to a cooperative evaluation of treatment results. Am J Orthodont Dentofac Orthop. 1998;114(5):538-50.
- 14. Hamdy RC, Montpetit K, Ruck-Gibis J. Safety and efficacy of botox injection in alleviating post-operative pain and improving quality of life in lower extremity limb lengthening and deformity correction. Trials. 2007;8:1-13.
- 15. Schoemann MB, Burstein FD, Bakthavachalam S, Williams JK. Immediate mandibular distraction in mandibular hypoplasia and upper airway obstruction. J Craniofac Surg. 2012;23(7):S39-42.

16. Chen Q, Zhao Y, Shen G, Dai J. Etiology and pathogenesis of hemifacial microsomia. J Dent Res. 2018;97(12):1297-305.

Cite this article as: Alshehri GZ, Almusharraf SM, Almutairi HH, Alshammari EL. Managing dental and skeletal development in patients with hemifacial microsomia. Int J Community Med Public Health 2024;11:3687-91.