pISSN 2394-6032 | eISSN 2394-6040

Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20242271

Microbial challenges and solutions in root canal therapy

Norah Fahad Al Ajmi^{1*}, May Khalid Alshenaifi², Mada Mohammed Binsalem¹, Khalid Abdullah Alahmary³, Noha Abdullah Al Shahrani¹, Abdulrahman Mohammed Alasim⁴, Fahad Rashed Alotaibi⁴, Abdulwahab Saleh Ali⁵, Sameeh Mansour Attar⁶, Nourah Mobarek Al Shahrani¹

Received: 18 July 2024 Accepted: 02 August 2024

*Correspondence:

Dr. Norah Fahad Al Ajmi,

E-mail: nonifahad101@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Root canal therapy (RCT) faces significant challenges due to microbial invasion and biofilm formation within the root canal system. The intricate anatomy of root canals, including isthmuses, lateral canals, and apical deltas, provides a conducive environment for pathogenic microorganisms, complicating effective disinfection. Key pathogens such as Enterococcus faecalis and Candida albicans are highly resilient, capable of forming biofilms that protect them from antimicrobial agents and host defences. Current antimicrobial strategies in endodontics combine mechanical instrumentation with chemical disinfection. Mechanical debridement, though essential, often falls short of thoroughly cleaning the complex root canal anatomy. Sodium hypochlorite (NaOCl), the gold standard irrigant, exhibits broadspectrum antimicrobial properties but struggles to penetrate biofilms and dentinal tubules fully. Adjunctive solutions like chlorhexidine (CHX) and ethylenediaminetetraacetic acid (EDTA) enhance the antimicrobial efficacy of NaOCl by providing prolonged action and removing the smear layer, respectively. Intracanal medicaments, such as calcium hydroxide (Ca(OH)₂), are utilized to maintain antimicrobial activity between treatment sessions. Despite its high pH and effectiveness against a wide range of bacteria, Ca(OH)₂ shows limited efficacy against biofilm-forming bacteria like Enterococcus faecalis. Innovations in irrigation techniques, such as passive ultrasonic irrigation (PUI) and laseractivated irrigation (LAI), have improved the delivery and activation of irrigants, enhancing their ability to disrupt biofilms and penetrate the root canal system. Nanoparticle-based irrigants and medicaments represent a promising advancement in endodontic disinfection. Their small size and large surface area allow for better penetration and interaction with bacterial cells, significantly reducing bacterial load in the root canal system. Combining traditional and advanced antimicrobial strategies is essential for overcoming the limitations of current methods and improving the success rates of endodontic therapy. Understanding the mechanisms of microbial invasion and biofilm formation, along with integrating emerging technologies, can lead to more effective disinfection protocols. This approach aims to enhance treatment outcomes and ultimately ensure the longevity of endodontically treated teeth.

Keywords: RCT, Microbial invasion, Biofilm formation, Antimicrobial strategies, Endodontic disinfection

¹Dental Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

²Dental Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia

³Dental Department, Armed Forces Hospital, King Abdulaziz Airbase, Dhahran, Saudi Arabia

⁴Department of Endodontics, National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia

⁵Prince Abdulrahman Advance Dental Institute, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

⁶Dental Department, Ministry of National Guard Hospital, Jeddah, Saudi Arabia

INTRODUCTION

Root canal therapy (RCT) remains a cornerstone of endodontic treatment aimed at preserving teeth affected by pulpal disease or trauma. Despite the high success rates of RCT, microbial challenges continue to pose significant obstacles, impacting treatment outcomes and patient satisfaction. The primary goal of RCT is to eradicate pathogenic microorganisms from the root canal system and prevent reinfection.1 However, the complex anatomy of the root canal, including lateral canals, isthmuses, and apical deltas, provides a conducive environment for microbial colonization and biofilm formation, complicating the disinfection process.² The root canal environment, once infected, harbors a diverse and resilient microbial community predominantly comprising anaerobic bacteria. These microorganisms, faecalis, Porphyromonas including Enterococcus endodontalis, and Fusobacterium nucleatum, are known for their virulence and resistance to conventional antimicrobial treatments.3 The biofilm mode of growth adopted by these microorganisms further enhances their resistance, making them difficult to eliminate using standard chemo-mechanical procedures. Biofilms are structured communities of bacteria encased in a selfproduced extracellular matrix, which protects them from antimicrobial agents and the host immune response.4

To address these challenges, various antimicrobial strategies have been developed and continuously refined. Traditional methods involve the use of sodium hypochlorite (NaOCl), CHX, and Ca(OH)2 as intracanal medicaments. While these agents have proven efficacy against a broad spectrum of microorganisms, their ability to penetrate deep into dentinal tubules and eradicate biofilm-embedded bacteria remains limited.5 Consequently, the persistence of microbial infections often necessitates retreatment or leads to treatment failures, underscoring the need for innovative approaches. Emerging technologies in endodontic disinfection, such as the use of laser irradiation, photodynamic therapy (PDT), and nanoparticles, have shown promise in overcoming the limitations of conventional methods. These advanced modalities offer enhanced antimicrobial activity, deeper penetration, and the potential to disrupt biofilms more effectively.⁴ Furthermore, the integration of advanced imaging techniques and molecular diagnostics is improving our understanding of the microbial landscape within root canals, facilitating more targeted and effective treatment strategies. In this review, we will explore the microbial challenges inherent in RCT. evaluate current antimicrobial strategies, and discuss emerging technologies and future directions in managing root canal infections.

REVIEW

Microbial challenges in RCT are primarily driven by the persistence of biofilm-forming bacteria, which complicate effective disinfection and increase the likelihood of treatment failure. *Enterococcus faecalis*, a common culprit in failed endodontic treatments, demonstrates remarkable resistance to conventional antimicrobial agents and can survive in harsh conditions within the root canal system. This bacterium's ability to penetrate deeply into dentinal tubules and form resilient biofilms makes it particularly problematic.⁵ Traditional irrigants like sodium hypochlorite, while effective against planktonic bacteria, often fall short in completely eradicating biofilm-associated microorganisms.

To address these limitations, newer disinfection techniques have been explored. PDT and the use of nanoparticles are among the promising advancements showing enhanced antimicrobial efficacy. PDT involves the use of light-activated photosensitizers that generate reactive oxygen species, effectively disrupting bacterial biofilms.⁶ Nanoparticles, on the other hand, offer unique advantages due to their small size and large surface area, allowing for better penetration and interaction with bacterial cells. Studies have demonstrated nanoparticles can significantly reduce bacterial load within root canals, providing a potent adjunct to preparation.⁷ chemo-mechanical traditional emerging technologies, combined with advances in molecular diagnostics, hold promise for improving the outcomes of RCT. By integrating these novel approaches, clinicians can enhance disinfection protocols, reduce microbial persistence, and ultimately increase the success rates of endodontic treatments.

MICROBIAL INVASION AND BIOFILM FORMATION IN ROOT CANAL SYSTEMS

Microbial invasion and subsequent biofilm formation in root canal systems are pivotal factors that contribute to the complexity and challenges of RCT. The intricate anatomy of the root canal system, comprising isthmuses, lateral canals, and apical deltas, provides an ideal environment for microbial colonization and biofilm development. These biofilms are structured communities of microorganisms embedded in a self-produced extracellular polymeric substance (EPS) matrix that adheres to root canal surfaces, offering protection and resilience against antimicrobial agents and host defenses.⁷

The initial microbial invasion often begins with the penetration of oral microorganisms into the pulp through caries, cracks, or trauma. Once inside the root canal, these microorganisms encounter a nutrient-rich environment conducive to growth and biofilm formation. The predominant bacterial species involved include facultative anaerobes and strict anaerobes such as *Enterococcus faecalis*, *Fusobacterium nucleatum*, and *Porphyromonas gingivalis*. These bacteria are highly adaptive, capable of surviving in the harsh conditions within the root canal, including low oxygen levels and limited nutrient availability. Biofilm formation in root canals involves a series of steps, beginning with the initial attachment of planktonic bacteria to the dentinal walls. This is followed

by the proliferation of bacterial cells and the production of the EPS matrix, which provides structural integrity and protection. Mature biofilms exhibit complex architecture with channels that allow for the distribution of nutrients and removal of waste products, further enhancing bacterial survival and virulence. The EPS matrix also plays a critical role in shielding the bacteria from antimicrobial agents and the host immune response, contributing to the persistence of infection despite endodontic treatment.9 The presence of biofilms in root canals poses significant challenges for disinfection and treatment success. Traditional chemo-mechanical preparation, which involves the use of endodontic instruments and antimicrobial irrigants like sodium hypochlorite, is often insufficient in completely eradicating biofilm-associated bacteria. The EPS matrix and the deeply embedded microorganisms within dentinal tubules remain protected, leading to persistent infections and potential treatment failure.9

To address these challenges, advanced disinfection techniques have been explored. These include the use of enhanced irrigants, adjunctive antimicrobial agents, and innovative technologies like laser therapy and PDT. Laser therapy, for instance, can disrupt biofilms and kill bacteria through the generation of heat and reactive species. **PDT** utilizes light-activated oxygen photosensitizers to produce cytotoxic agents that effectively target biofilm-embedded bacteria. Additionally, nanoparticles have shown promise in penetrating biofilms and delivering antimicrobial agents directly to bacterial cells, overcoming the protective barriers of the EPS matrix.¹⁰ Microbial invasion and biofilm formation in root canal systems represent significant hurdles in endodontic treatment. Understanding the mechanisms of biofilm development and the adaptive strategies of root canal pathogens is crucial for devising effective disinfection protocols and improving treatment outcomes.

CURRENT ANTIMICROBIAL STRATEGIES IN ENDODONTIC TREATMENT

Effective antimicrobial strategies are essential in endodontic treatment to ensure the successful elimination of pathogenic microorganisms from the root canal system and to prevent reinfection. The primary antimicrobial strategies employed in endodontics include the use of mechanical instrumentation, irrigation solutions, and intracanal medicaments. These methods aim to disrupt and eliminate the biofilms formed by resilient bacteria, such as Enterococcus faecalis and Candida albicans, which are commonly associated with persistent root canal infections.¹⁰ Mechanical instrumentation involves the use of endodontic files and rotary instruments to physically remove infected dentin and debris from the root canal. This process also helps to disrupt biofilms and expose microorganisms to antimicrobial agents. However, mechanical instrumentation alone is often insufficient due to the complex anatomy of the root canal system, which includes isthmuses, lateral canals, and apical deltas that are difficult to access and clean thoroughly. 10

Irrigation solutions play a crucial role in enhancing the antimicrobial efficacy of endodontic treatment. NaOCl is the most used irrigant due to its broad-spectrum antimicrobial properties and ability to dissolve organic tissue. NaOCl effectively disrupts and kills planktonic biofilm-associated microorganisms. bacteria and However, its efficacy can be limited by its inability to penetrate deep into dentinal tubules and biofilm matrices. To address this, adjunctive irrigation solutions such as CHX and EDTA are often used. CHX has substantivity, providing prolonged antimicrobial action, while EDTA helps in removing the inorganic component of the smear layer, enhancing the penetration of NaOCl.⁵ Intracanal medicaments are used between treatment sessions to maintain antimicrobial activity within the root canal system. Ca(OH)2 is one of the most commonly used intracanal medicaments due to its high pH, which creates an unfavorable environment for bacterial survival. Ca(OH)₂ is effective against a wide range of microorganisms and helps to dissolve remaining necrotic tissue. However, its efficacy against certain biofilmforming bacteria, such as Enterococcus faecalis, can be limited.11

Recent advancements in antimicrobial strategies have focused on enhancing the penetration and efficacy of traditional agents. Techniques such as PUI and LAI have been developed to improve the distribution and activation of irrigants within the root canal system. PUI uses ultrasonic waves to create acoustic streaming and cavitation, enhancing the penetration of irrigants into dentinal tubules and biofilms. LAI utilizes laser energy to activate irrigants, generating shock waves and increased fluid dynamics that disrupt biofilms and enhance antimicrobial action.¹¹ Current antimicrobial strategies in endodontic treatment involve a combination of mechanical instrumentation, irrigation solutions, and intracanal medicaments. While these methods are effective in reducing microbial load, ongoing research and technological advancements aim to overcome the limitations of traditional approaches and improve treatment outcomes. Enhanced irrigation techniques and innovative antimicrobial agents hold promise for more effective disinfection of the complex root canal system, ultimately leading to higher success rates in endodontic therapy.

EMERGING TECHNOLOGIES AND FUTURE DIRECTIONS IN MANAGING ROOT CANAL INFECTIONS

Current antimicrobial strategies in endodontic treatment focus on combining mechanical debridement with chemical disinfection to effectively eliminate pathogens and prevent reinfection. Mechanical instrumentation, while essential, is insufficient on its own due to the complex anatomy of the root canal system, which includes intricate isthmuses, lateral canals, and apical deltas that are challenging to clean thoroughly. 12

Irrigation solutions are integral to enhancing the antimicrobial efficacy of endodontic procedures. NaOCl remains the gold standard due to its broad-spectrum antimicrobial activity and ability to dissolve organic tissue. However, NaOCl has limitations, including potential toxicity to periapical tissues and the inability to completely penetrate biofilms and dentinal tubules. ¹⁰ To augment its effectiveness, adjunctive solutions such as CHX and EDTA are frequently employed. CHX is known for its substantivity, providing prolonged antimicrobial action, while EDTA aids in removing the smear layer, thus enhancing the penetration of NaOCl into the root canal system. ¹³

Intracanal medicaments are used between treatment sessions to maintain an antimicrobial environment within the root canal. Ca(OH)₂ is one of the most commonly used medicaments due to its high pH, which is detrimental to microbial survival. Ca(OH)₂ is particularly effective against a wide range of bacterial species and helps dissolve necrotic tissue remnants. However, its efficacy against biofilm-forming bacteria like Enterococcus faecalis is limited, necessitating additional or alternative antimicrobial strategies.¹⁴

Recent advancements have focused on improving the delivery and activation of irrigants. Passive is a technique that uses ultrasonic energy to enhance the effectiveness of irrigants. PUI creates acoustic streaming and cavitation, which improve the penetration of irrigants into the complex root canal anatomy and disrupt biofilms more effectively than traditional syringe irrigation.¹⁵ Another innovative approach is LAI, which uses laser energy to activate irrigants. This technique generates shock waves and enhances fluid dynamics within the root canal, leading to better disruption of biofilms and increased antimicrobial efficacy.¹⁶ Furthermore, the development of nanoparticle-based irrigants and medicaments offers promising enhancements in antimicrobial strategies. Nanoparticles, due to their small size and large surface area, can penetrate biofilms and dentinal tubules more effectively than conventional irrigants. Studies have shown that nanoparticles, such as silver nanoparticles, exhibit potent antimicrobial properties and can significantly reduce bacterial load in the root canal system.¹⁷ Current antimicrobial strategies in endodontic treatment involve a multifaceted approach that combines mechanical debridement with advanced irrigation techniques and intracanal medicaments. Continuous research and technological advancements are essential to overcome the limitations of traditional methods and improve the success rates of endodontic therapy.

CONCLUSION

Effective RCT hinges on overcoming microbial challenges and biofilm formation. Advanced

antimicrobial strategies and innovative technologies are essential for enhancing disinfection and treatment outcomes. Continuous research and integration of these advancements will improve the success rates of endodontic therapy.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Siqueira Jr JF, Rôças IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endodont. 2008;34(11):1291-301.
- 2. Nair PR. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med. 2004;15(6):348-81.
- Sundqvist G, Figdor D, Persson S, Sjögren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 1998;85(1):86-93.
- 4. Ricucci D, Siqueira Jr JF. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endodont. 2010;36(8):1277-88.
- 5. Haapasalo M, Shen Y, Qian W, Gao Y. Irrigation in endodontics. Dental Clin. 2010;54(2):291-312.
- 6. Alfirdous RA, Garcia IM, Balhaddad AA, Collares FM, Martinho FC, Melo MAS. Advancing photodynamic therapy for endodontic disinfection with nanoparticles: present evidence and upcoming approaches. Applied Sci. 2021;11(11):4759.
- 7. Kakehashi S, Stanley H, Fitzgerald R. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral surg Oral Med Oral Pathol. 1965;20(3):340-9.
- 8. Siqueira Jr J, Rôças I. Diversity of endodontic microbiota revisited. J Dental Res. 2009;88(11):969-81.
- Ricucci D, Siqueira Jr JF, Bate AL, Ford TRP. Histologic investigation of root canal-treated teeth with apical periodontitis: a retrospective study from twenty-four patients. J Endodont. 2009;35(4):493-502.
- 10. Zehnder M. Root canal irrigants. J Endodont. 2006;32(5):389-98.
- 11. Evans MD, Baumgartner JC, Khemaleelakul S-u, Xia T. Efficacy of calcium hydroxide: chlorhexidine paste as an intracanal medication in bovine dentin. J Endodont. 2003;29(5):338-9.
- 12. Peters OA, Laib A, Rüegsegger P, Barbakow F. Three-dimensional analysis of root canal geometry by high-resolution computed tomography. J Dental Res. 2000;79(6):1405-9.
- 13. Haapasalo M, Qian W, Portenier I, Waltimo T. Effects of dentin on the antimicrobial properties of endodontic medicaments. J Endodont. 2007;33(8):917-25.

- 14. Siqueira Jr JF, Rôças IN, Favieri A, Lima KC. Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J Endodont. 2000;26(6):331-4.
- 15. Gu L-s, Kim JR, Ling J, Choi KK, Pashley DH, Tay FR. Review of contemporary irrigant agitation techniques and devices. J Endodont. 2009;35(6):791-804.
- 16. Ahmetoglu F, Keles A, Yalcin M, Simsek N. Effectiveness of different irrigation systems on smear layer removal: A scanning electron microscopic study. Eur J Dentistr. 2014;8(01):53-7.
- 17. Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dental Materials. 2020;36(11):1365-78.

Cite this article as: Al Ajmi NF, Alshenaifi MK, Binsalem MM, Alahmary KA, Al Shahrani NA, Alasim AM, et al. Microbial challenges and solutions in root canal therapy. Int J Community Med Public Health 2024;11:3672-6.