### **Original Research Article**

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20242860

### Adherence to post-exposure prophylaxis and associated sociodemographic characteristics of dog bite patients visiting selected health facilities in Kisii County, Kenya

Nickson Okiomeri Ogugu<sup>1\*</sup>, Isaac Mwanzo<sup>1</sup>, Micheal Muita Gicheru<sup>2</sup>

Received: 16 July 2024 Revised: 14 August 2024 Accepted: 16 August 2024

### \*Correspondence:

Dr. Nickson Okiomeri Ogugu, E-mail: nickogugu@gmail.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **ABSTRACT**

**Background:** Dog bites have proven to be a significant public health concern among African and Asian countries that report 95% of human mortalities. Rabies is a deadly viral disease spread by a rabid animal that invades the CNS and is 100% fatal. The main objective of the study was to assess adherence to rabies post-exposure prophylaxis and associated socio-demographic characteristics among dog bite patients.

**Methods:** This was a hospital-based cross-sectional study with 289 dog bite patients from selected health facilities in Kisii County, Kenya. Simple random sampling technique was adopted in the selection of participants, while the health facilities were purposively selected. Data was analysed using SPSS software version 25.

**Results:** More than a half (57.8%) of the dog bites were females as compared to their male counterparts (42.2%). Level of education (p=0.001), age (p=0.012), marital status (p=0.001), income (p=0.001) were significant determinants of adherence to rabies PEP treatment, preferred rabies PEP regimen acquired (p=0.001). Over 68.2% of the patients adhered to rabies PEP treatment, adherence to individual dosage of ARV regimen with 67.2% of dog bite patients completed the PEP regimen, ZAGREB regimen had 95.6% of dog bite patients likely to complete their treatment compared to ESSEN regimen.

**Conclusions:** Dog bites were prevalent among females. The study further revealed that as the level of education increased the odds of rabies PEP adherence treatment improved. Dog bite patients preferred ZAGREB rabies PEP regimen.

Keywords: Rabies, Rabies post-exposure prophylaxis, Socio-demographic characteristics, Zoonotic disease

### INTRODUCTION

Rabies is a well-recognized universally neglected viral zoonotic disease, originating from rabies lyssavirus. With a fatality rate of almost 100% in humans and animals alike, rabies remains a global threat, killing approximately 59,000 people every year. Globally, the main reservoir of human rabies is a dog and 99% of human rabies cases are due to bites from infected dogs. Out of all the rabies deaths taking place across the world, 95% occur in Africa and Asia, which can be attributed to

the rapid growth of the canine population. As such, the new cases of human rabies have been on a rise, despite the failure of detection and reporting systems for the disease.<sup>3</sup>

Dog bites have recently proved to be a significant public health menace in the continents of Africa and Asia.<sup>4</sup> The major reservoir of rabies virus is the domesticated dogs that globally contribute to 99% of human mortalities. Rabies infections are listed as a major health hazard in Africa regardless of reported death rates of both human

<sup>&</sup>lt;sup>1</sup>Department of Community Health and Epidemiology, Kenyatta University, Nairobi, Kenya

<sup>&</sup>lt;sup>2</sup>Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya

beings and dogs since this does not portray the true burden of the disease.<sup>5</sup> Approximately 60,000 mortalities occur globally as a result of rabies infection annually with an estimated 44% occurring in Africa and 56% in Asian countries with remote areas in this continent adversely affected.<sup>6</sup> Rabies is a well-known acute, progressive, and 100% fatal disease once it sets in.<sup>7</sup> Over 100 years PEP has proved to be the utmost measure for the management and elimination of rabies.<sup>8</sup>

In Kenya, nearly 2000 human deaths occur annually as a result of rabies. Human rabies status is under-estimated in Kenya as a result of factors hindering proper health-seeking behaviour, lack of reporting tools, poor diagnostic capacity, and lack of anti-rabies vaccines, knowledge level, and practices on dog bite management by affected persons. According to the zoonotic disease unit ranking, rabies disease is ranked as the highest zoonotic disease with at least 1000-2000 occurrence of human rabies cases reported yearly.

#### **METHODS**

This study, conducted between June and July 2022, was carried out in selected health facilities in Kisii County, Kenya. Kisii County is one of the 47 counties in the Republic of Kenya. It shares boundaries with Nyamira County to the north east, Narok County to the South and and Homabay County to the Administratively, the county has 9 sub-counties, 33 divisions, 103 locations and 237 sub-locations. The county has 2 level 5 health facilities, 32 level 4 facilities, 48 level 3 facilities, 100 level 2 hospitals and 296 functional community health units spread across all the 9 sub-counties in the county. On staffing, the county has over 538 healthcare workers. The common causes of morbidity in the county are malaria, diarrhea and respiratory and they contribute to high mortalities in the county. The county is experiencing high incidence levels of HIV/AIDS.

The key study population composed of both males and females of all ages attending selected health facilities in Kisii County with dog bites and received rabies PEP treatment, care givers for those under eighteen years and healthcare workers attending to dog bites patients, a hospital-based cross-sectional study was adopted.

The study employed the formula as used by Fischer et al, 2003 for sample size determination. <sup>12</sup> A minimum of 289 dog bite patients was considered sufficient to generate valid results. The study adopted a simple random sampling technique to select dog bite patients and purposive sampling to select health facilities. The dog bite patients that had consented and willing to participate were enrolled into the study.

A questionnaire was adopted for data collection with a focus on the following variables: age, gender, level of education, employment status, settlement type, marital status, religion and monthly income.

Relevant approvals were sought from all participants and confidentiality assured and maintained. The researcher sought necessary approval from Kenyatta University Graduate School. Ethical clearance was obtained from Kenyatta University ethical review committee (Ref No. ISERC/KTRH/006/22), while National Commission for Science and technology and Innovation granted administrative authorization. Further, clearance and necessary approvals from relevant departments in Kisii County were duly obtained. Written and signed informed consent was obtained from respondents before commencement of the study.

SPSS software version 25 was used for data analysis. The descriptive statistics were presented in form of tables and graphs. Chi-square analysis was utilized to examine differences adherence to PEP treatment and sociodemographic factors among dog bite patients. Statistically significant association was set at a p value less than or equally to 0.05. Qualitative data from the key informant interviews (KII) and focused group discussions (FGD) were organized and analysed based on the key themes generated from the study objectives. This qualitative data was presented in the form of voices from the respondents.

### **RESULTS**

More than a half of the dog bite cases (57.8%) were female. Majority of the patients interviewed ranged between 22 and 32 years, with an average age of 33 years, mode being 20 years and the range being 81 years ( $\sigma$  17.319). The vast majority 156 (54.0%) resided in semi-urban areas. As regards education, it was noted that most of the respondents had completed their secondary education 79 (27.3%) and were self-employed 112 (38.8%). On monthly income 23.5% of the patients earned below KES 4500. More details are presented in Table 1.

### Characteristics of exposure

A half (50.5%) of the patients reported dog bites, 37% scratches and 12.5% with dog licks. Further, 70.9% of the patients had the types of bite indicated in their patient's card. Out of the 70.9% patients; 58.5% were in the first WHO category and 29.3% were in the second category. In addition, 68.2% of the study respondents reported that the attacking animal was a stray dog while 31.8% reported pet dog as the attacking animal. The study further noted that 43.3% knew the attacking dog status while 56.7% did not know the status. Of those who knew the status of attacking dog 73 (68%) knew the vaccination status of the dog. Majority of the respondents (70.2%) were attacked by unprovoked dog while 29.8% provoked the attacking dog. Regarding the affected body parts, about 42.9% of the patients were attacked on the upper

limbs, 42.2% lower limbs, 11.4% on the neck and 3.5% was on the head as shown in Table 2.

### Anti-rabies post-exposure prophylaxis adherence rate

The Figure 1 shows that 68.2% of the participants adhered to post-exposure prophylaxis treatment while 31.83% did not adhere.

## Adherence to individual dose of anti-rabies vaccine regimen

The study further investigated the patient's adherence to the recommended WHO 6 schedule. At the start of the treatment 289 patients received anti-rabies vaccines, but only 129 (67.2%) patients completed and adhered to anti-rabies vaccines regimen. A total of 97 (50.5%) patients defaulted on their schedule and 39 patients were rescheduled after 2 days of the scheduled date as shown in Table 3.

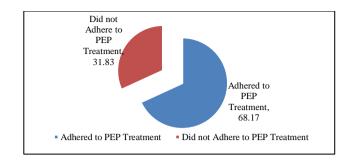



Figure 1: Level of adherence to PEP treatment.

### Completion of treatment

The results displayed in Table 4 shows that patients on ZAGREB regimen 95.6% are likely to complete their treatment as compared to those on ESSEN regimen 24.7%. The results show that over a half 61.6% of the patients preferred ZAGREB regimen.

Table 1: Description of socio-demographic factors of dog bite patients.

| Variables                |                     | Frequency (n=289) | Percentage |
|--------------------------|---------------------|-------------------|------------|
| Candan                   | Male                | 122               | 42.2       |
| Gender                   | Female              | 167               | *57.8      |
|                          | 0-10                | 33                | 11.4       |
| Age (years)              | 11-21               | 63                | 21.8       |
|                          | 22-32               | 66                | *22.8      |
|                          | 33-43               | 59                | 20.4       |
|                          | 44-54               | 32                | 11.1       |
|                          | above 54            | 36                | 12.5       |
|                          | Divorced/widowed    | 40                | 13.8       |
| Marital status           | Married             | 132               | *45.7      |
|                          | Single              | 117               | 40.5       |
|                          | No formal education | 57                | 19.5       |
| <b>Education level</b>   | Primary             | 53                | 18.3       |
|                          | Secondary           | 79                | *27.3      |
|                          | Tertiary            | 64                | 22.6       |
|                          | University          | 36                | 12.3       |
|                          | Rural               | 93                | 32.2       |
| Settlement type          | Semi-urban          | 156               | *54.0      |
|                          | Urban               | 40                | 13.8       |
|                          | Not employed        | 96                | 33.2       |
| <b>Employment status</b> | Self employed       | 112               | 38.8       |
|                          | Employed            | 68                | 23.5       |
|                          | Christian           | 252               | *87.2      |
| Religion                 | Muslim              | 33                | 11.4       |
|                          | None                | 4                 | 1.4        |
|                          | Below KES. 4500     | 68                | *23.5      |
|                          | 4500-6500           | 23                | 8.0        |
| Monthly income           | 6501-8500           | 57                | 19.7       |
|                          | 8501-10500          | 52                | 18.0       |
| *C 11                    | Above KES. 10500    | 43                | 14.9       |

<sup>\*</sup>Statistically significant

**Table 2: Characteristics of exposure.** 

| Variable                            |                          | Frequency | Percentage (%) |  |
|-------------------------------------|--------------------------|-----------|----------------|--|
|                                     | Bite                     | 146       | *50.5          |  |
| Type of exposure                    | Scratches                | 107       | 37             |  |
|                                     | Licks 36                 |           | 12.5           |  |
| Type of bite indicated in the       | Yes 205                  |           | *70.9          |  |
| patient's card                      | No                       | 84        | 29.1           |  |
| Catagory of avnagura as nor the     | 1st category             | 120       | *58.5          |  |
| Category of exposure as per the WHO | 2 <sup>nd</sup> category | 60        | 29.3           |  |
| WHO                                 | 3 <sup>rd</sup> category | 25        | 12.2           |  |
| Type of attacking animal            | Stray dog 197            |           | *68.2          |  |
|                                     | Pet dog                  | 92        | 31.8           |  |
| Vacantadas an animal status         | Yes                      | 125       | 43.3           |  |
| Knowledge on animal status          | No                       | 164       | *56.7          |  |
|                                     | Vaccinated               | 17        | 13.6           |  |
| Animal vaccination status           | Unvaccinated             | 23        | 18.4           |  |
|                                     | Unknown                  | 85        | *68.0          |  |
|                                     | Head                     | 10        | 3.5            |  |
| Affected hadr neut                  | Neck                     | 33        | 11.4           |  |
| Affected body part                  | Upper limbs              | 124       | *42.9          |  |
|                                     | Lower limbs              | 122       | 42.2           |  |
| Circumstance of bite                | Provoked                 | 86        | 29.8           |  |
| Circumstance of bite                | Unprovoked               | 203       | *70.2          |  |

<sup>\*</sup>Statistically significant

Table 3: Details on post-exposure prophylaxis adherence.

|        | Received anti-rabies vaccines | Delayed | Defaulter | Rescheduled |
|--------|-------------------------------|---------|-----------|-------------|
| Day 0  | 289                           | 0       | 0         | 0           |
| Day 3  | 177                           | 55      | 26        | 31          |
| Day 7  | 140                           | 82      | 50        | 8           |
| Day 28 | 129                           | 63      | 21        | 0           |

Table 4: Details on post-exposure prophylaxis regimen adherence.

| Variables                         |                      | Frequency | Percentage (%) |
|-----------------------------------|----------------------|-----------|----------------|
|                                   | Zagreb completed     | 170       | *95.6          |
| Completion status for             | Zagreb not completed | 8         | 4.4            |
| Completion status for PEP regimen | Essen completed      | 27        | 24.7           |
| rer regimen                       | Essen not completed  | 82        | *75.3          |
|                                   | Average adherence    | 197       | *68.2          |
| Types of DED regimen              | Zagreb regimen       | 178       | *61.6          |
| Types of PEP regimen              | Essen regimen        | 109       | 38.4           |

<sup>\*</sup>Statistically significant

Table 5: Influence of socio-demographic factors on adherence to rabies PEP treatment.

| Variables    | Adherence to post-exposure prophylaxis N (%) | Non-adherence to post-<br>exposure prophylaxis N (%) | OR (95%CI)           | P value |
|--------------|----------------------------------------------|------------------------------------------------------|----------------------|---------|
| Age in years |                                              |                                                      |                      | 0.012   |
| 0-10         | 17 (51.5)                                    | 16 (48.5)                                            | ref.                 |         |
| 11-21        | 38 (60.3)                                    | 25 (39.7)                                            | 1.340 (0.995-1.074)  | 0.091   |
| 22-32        | 46 (69.7)                                    | 20 (30.3)                                            | 0.903 (0.329-2.480)  | 0.843   |
| 33-43        | 35 (59.3)                                    | 24 (40.7)                                            | 0.478 (0.232-0.988)  | 0.001   |
| 44-54        | 16 (50.0)                                    | 16 (50.0)                                            | 2.006 (0.972-4.138)  | 0.069   |
| Above 54     | 13 (36.1)                                    | 23 (63.9)                                            | 4.421 (1.898-10.298) | 0.001   |

Continued.

| Variables              | Adherence to post-exposure prophylaxis N (%) | Non-adherence to post-<br>exposure prophylaxis N (%) | OR (95%CI)            | P value |
|------------------------|----------------------------------------------|------------------------------------------------------|-----------------------|---------|
| Gender                 |                                              |                                                      |                       | 0.263   |
| Male                   | 65 (53.3)                                    | 57 (46.7)                                            | ref.                  |         |
| Female                 | 100 (59.9)                                   | 67 (40.1)                                            | 0.488 (0.150-1.590)   | 0.263   |
| Marital status         |                                              |                                                      |                       | 0.001   |
| Single                 | 71 (60.7)                                    | 46 (39.3)                                            | ref.                  |         |
| Married                | 80 (60.6)                                    | 52 (39.4)                                            | 4.489 (2.050-9.89)    | 0.001   |
| Divorced/widowed       | 13 (34.2)                                    | 25 (65.8)                                            | 3.685 (2.382-5.702)   | 0.021   |
| <b>Education level</b> |                                              |                                                      |                       | 0.001   |
| No formal education    | 22 (38.6)                                    | 35 (61.4)                                            | ref.                  |         |
| Primary                | 30 (56.6)                                    | 23 (43.4)                                            | 0.794 (0.084-7.200)   | 0.033   |
| Secondary              | 41 (51.9)                                    | 38 (48.1)                                            | 4.421 (1.898-10.298)  | 0.001   |
| Tertiary               | 44 (68.8)                                    | 20 (31.2)                                            | 6.577 (3.043-14.213)  | 0.001   |
| University             | 28 (77.8)                                    | 8 (22.2)                                             | 3.864 (1.729-8.635)   | 0.001   |
| Settlement type        |                                              |                                                      | ref.                  | 0.485   |
| Rural                  | 48 (52.2)                                    | 44 (47.8)                                            | 0.831 (0.422-1.636)   | 0.592   |
| Semi urban             | 93 (59.6)                                    | 63 (40.4)                                            | 0.488 (0.150-1.590)   | 0.234   |
| Urban                  | 24 (60.0)                                    | 16 (40.0)                                            | 0.718 (0.334-1.547)   | 0.398   |
| Religion               |                                              |                                                      |                       | 0.676   |
| Christian              | 142 (56.3)                                   | 110 (43.7)                                           | ref.                  |         |
| Muslim                 | 24 (72.7)                                    | 9 (27.3)                                             | 0.831 (0.422-1.636)   | 0.592   |
| None                   | 2 (50.0)                                     | 2 (50)                                               | 1.080 (0.421-2.771)   | 0.872   |
| Monthly income         |                                              |                                                      |                       | 0.001   |
| Below KES. 4500        | 42 (61.8)                                    | 26 (38.2)                                            | ref.                  |         |
| 4500-6500              | 15 (65.2)                                    | 8 (34.8)                                             | 0.831 (0.422-1.636)   | 0.592   |
| 6500-8500              | 22 (38.6)                                    | 35 (61.4)                                            | 2.881 (1.104-7.518)   | 0.031   |
| 8500-10500             | 28 (53.8)                                    | 24 (46.2)                                            | 3.704 (1.405-9.763)   | 0.008   |
| Above KES. 10500       | 34 (79.1)                                    | 9 (20.9)                                             | 27.368 (7.496-99.929) | 0.001   |

### Socio-economic characteristics and adherence to PEP

Table 5 shows the influence of socio-demographic factors on adherence to rabies PEP prophylaxis among dog bite patients. The results show that age (0.012), marital status (0.001) and monthly income (0.001) were statistically significant, whereas gender (p=0.263), settlement type (p=0.4850 and religion (p=0.6.76) were not. There was a significant difference between those who adhered as compared to those who did not adhere to treatment regimen.

### Socio-demographics characteristics and adherence to individual rabies vaccines

The study evaluated each socio-demographic characteristic and individual rabies vaccines from day one to day 28 as per the WHO rabies PEP treatment regimen.

The influence of socio-demographic characteristics on adherence to Individual rabies vaccines at day zero

The study determined if there was any association between socio-demographic characteristics on adherence to individual rabies PEP treatment. It was noted that there was no statistical significance between gender, age, marital status, education level, religion, occupation, settlement and monthly income and adherence to individual rabies vaccine at day 0 ( $\chi 2=33.464$ , df=24, p=0.095).

# Socio-demographic characteristics and adherence to individual rabies vaccines at day three

The study went further to evaluate if there was any association between socio-demographic characteristics on adherence to individual rabies PEP treatment. The study revealed that there was statistical significance between gender ( $\chi$ 2=131.657, df=3, p<0.000), education level ( $\chi$ 2=41.103, df=12, p<0.000) occupation ( $\chi$ 2=18.722, df=6, p<0.005) and settlement type ( $\chi$ 2=14.436, df=6, p<0.025) and adherence to individual rabies vaccine at day 3 as shown in Table 6.

## Socio-demographic characteristics and adherence to individual rabies vaccines at day seven

Table 7 shows the socio-demographic characteristics influence adherence to individual rabies at day 7. There was a significant statistical relationship between gender ( $\chi$ 2=221.607, df=3, p<0.000), age ( $\chi$ 2=29.267, df=15, p<0.015), settlement type ( $\chi$ 2=29.267, df=15, p<0.150) and monthly income ( $\chi$ 2=22.466, df=12, p=0.033).

### Socio-demographic characteristics and adherence to individual rabies vaccines at day twenty-eight

The study also sought to determine whether there was any statistical significance between socio-demographic characteristics and adherence to individual rabies vaccines at day 28. The findings showed that there was

statistical significance between marital status ( $\chi 2=16.828$ , df=6, p<0.010), education level ( $\chi 2=25.146$ , df=12, p<0.014), occupation ( $\chi 2=17.779$ , df=6, p<0.007) and monthly income ( $\chi 2=23.131$ , df=12, p=0.027) of the dog bite patient and adherence to individual rabies vaccine at day 28 as shown in Table 8.

Table 6: The influence of socio-demographic characteristics on adherence to Individual rabies vaccines at day zero

| Variables             | Received | Delayed | Defaulted | Rescheduled | Statistics                        |
|-----------------------|----------|---------|-----------|-------------|-----------------------------------|
| ARV received at day 3 |          |         |           |             |                                   |
| Gender                |          |         |           |             |                                   |
| Male                  | 122      | 0       | 0         | 0           | $\chi^2 = 131.657$ ,              |
| Female                | 56       | 54      | 26        | 31          | df=3,p<0.000                      |
| Age (years)           |          |         |           |             |                                   |
| 0-10                  | 27       | 6       | 0         | 0           |                                   |
| 11-21                 | 43       | 10      | 4         | 6           | 2 22 751                          |
| 22-32                 | 33       | 15      | 12        | 6           | $\chi^{2}=22.751, df=15, p=0.090$ |
| 33-43                 | 32       | 12      | 5         | 10          |                                   |
| 44-54                 | 19       | 6       | 2         | 5           | — p=0.090                         |
| Above 54              | 24       | 5       | 3         | 4           |                                   |
| Marital status        |          |         |           |             |                                   |
| Single                | 153      | 47      | 25        | 27          | 2 2 202 15 6                      |
| Married               | 22       | 7       | 1         | 3           | $\chi^2=3.893, df=6,$<br>p=0.691  |
| Divorced              | 3        | 0       | 0         | 1           | p=0.091                           |
| Education level       |          |         |           |             |                                   |
| No formal education   | 42       | 10      | 2         | 3           |                                   |
| Primary               | 40       | 6       | 2         | 5           | $\chi^2 = 41.103$ ,               |
| Secondary             | 45       | 14      | 11        | 9           | df=12,                            |
| Tertiary              | 39       | 12      | 10        | 3           | p<0.000                           |
| University            | 12       | 12      | 1         | 11          |                                   |
| Religion              |          |         |           |             |                                   |
| Christian             | 153      | 47      | 25        | 27          | 2 2 902 15 6                      |
| Muslim                | 22       | 7       | 1         | 3           | $\chi^2=3.893$ , df=6, p<0.691    |
| No religion           | 3        | 0       | 0         | 1           | p<0.091                           |
| Occupation            |          |         |           |             |                                   |
| Not employed          | 75       | 18      | 3         | 4           | 2 10 700 10 6                     |
| Self employed         | 64       | 22      | 13        | 20          | $\chi^2=18.722$ , df=6, p<0.005   |
| Employed              | 39       | 14      | 9         | 7           | p<0.003                           |
| Settlement type       |          |         |           |             |                                   |
| Rural                 | 66       | 13      | 5         | 8           | 2 14 426 16 6                     |
| Semi-urban            | 87       | 32      | 21        | 16          |                                   |
| Urban                 | 24       | 9       | 0         | 7           |                                   |
| Monthly income        |          |         |           |             |                                   |
| Below KES. 2500       | 50       | 14      | 0         | 8           |                                   |
| 2500-5000             | 23       | 7       | 4         | 2           | $\chi^2 = 14.297$ ,               |
| 5001-7500             | 40       | 16      | 11        | 8           | df=12,                            |
| 7501-10000            | 36       | 11      | 7         | 6           | p=0.282                           |
| Above KES 10,000      | 26       | 6       | 4         | 7           |                                   |

Table 7: Socio-demographic characteristics and adherence to individual rabies vaccines at day seven.

| Variables             | Received | Delayed | Defaulted | Rescheduled | Statistics           |
|-----------------------|----------|---------|-----------|-------------|----------------------|
| ARV received at day 7 |          |         |           |             |                      |
| Gender                |          |         |           |             |                      |
| Male                  | 122      | 0       | 0         | 0           | $\chi^2 = 221.607$ , |
| Female                | 19       | 82      | 49        | 17          | df=3, p<0.000        |

Continued.

| Variables           | Received | Delayed | Defaulted | Rescheduled | Statistics                                |
|---------------------|----------|---------|-----------|-------------|-------------------------------------------|
| Age (years)         |          |         |           |             |                                           |
| 0-10                | 23       | 10      | 0         | 0           |                                           |
| 11-21               | 40       | 11      | 10        | 2           | χ <sup>2</sup> =29.267,<br>df=15, p<0.015 |
| 22-32               | 28       | 17      | 17        | 4           |                                           |
| 33-43               | 24       | 19      | 9         | 7           |                                           |
| 44-54               | 11       | 13      | 6         | 2           |                                           |
| Above 54            | 15       | 12      | 7         | 2           |                                           |
| Marital status      |          |         |           |             |                                           |
| Single              | 71       | 27      | 14        | 5           | $\chi^2$ =16.057, df=6,                   |
| Married             | 59       | 39      | 27        | 7           | γ =10.037, d1=0,<br>- p=0.931             |
| Divorced            | 11       | 14      | 8         | 5           | p=0.931                                   |
| Education level     |          |         |           |             |                                           |
| No formal education | 29       | 23      | 4         | 1           |                                           |
| Primary             | 33       | 13      | 6         | 1           | χ <sup>2</sup> =49.491, df=12,<br>p<0.670 |
| Secondary           | 42       | 14      | 18        | 5           |                                           |
| Tertiary            | 27       | 22      | 13        | 2           |                                           |
| University          | 10       | 10      | 8         | 8           |                                           |
| Religion            | 118      | 73      | 45        | 16          |                                           |
| Christian           | 21       | 8       | 3         | 1           | $\chi^2=4.200$ ,                          |
| Muslim              | 2        | 1       | 1         | 0           | $\chi = 4.200$ ,<br>- df=6,p<0.650        |
| No religion         |          |         |           |             | u1=0,p<0.030                              |
| Occupation          |          |         |           |             |                                           |
| Not employed        | 62       | 30      | 6         | 2           | $\chi^2$ =21.126, df=6,                   |
| Self employed       | 51       | 31      | 26        | 11          | $\chi = 21.126$ , d1=6, p<0.349           |
| Employed            | 28       | 21      | 16        | 4           | p<0.549                                   |
| Settlement type     |          |         |           |             |                                           |
| Rural               | 53       | 25      | 10        | 4           | $\chi^2$ =29.267, df=15,                  |
| Semi-urban          | 69       | 42      | 38        | 7           | $\chi = 29.207$ , di=13, p<0.150          |
| Urban               | 18       | 15      | 1         | 6           | - p<0.130                                 |
| Monthly income      |          |         |           |             |                                           |
| Below KES. 2500     | 45       | 19      | 3         | 5           |                                           |
| 2500-5000           | 21       | 7       | 7         | 1           | 2-22 166 df_12                            |
| 5001-7500           | 32       | 21      | 18        | 4           | $\chi^2$ =22.466, df=12,<br>p=0.033       |
| 7501-10000          | 25       | 20      | 13        | 2           | p=0.033                                   |
| Above KES 10,000    | 15       | 15      | 8         | 5           |                                           |

Table 8: Socio-demographic characteristics and adherence to Individual rabies vaccines at day twenty-eight.

| Variables              | Received | Delayed | Defaulted | Rescheduled | Statistics                      |
|------------------------|----------|---------|-----------|-------------|---------------------------------|
| ARV received at day 28 |          |         |           |             |                                 |
| Gender                 |          |         |           |             |                                 |
| Male                   | 0        | 35      | 83        | 4           | $\chi^2=131.657$ ,              |
| Female                 | 130      | 37      | 0         | 0           | df=5, p<0.521                   |
| Age (in years)         |          |         |           |             |                                 |
| 0-10                   | 8        | 8       | 16        | 1           |                                 |
| 11-21                  | 22       | 15      | 24        | 2           |                                 |
| 22-32                  | 38       | 13      | 14        | 1           | $\chi^2 = 22.649$ ,             |
| 33-43                  | 30       | 15      | 14        | 0           | df=15, p=0.092                  |
| 44-54                  | 16       | 10      | 6         | 0           |                                 |
| Above 54               | 16       | 11      | 9         | 0           |                                 |
| Marital status         |          |         |           |             |                                 |
| Single                 | 41       | 29      | 43        | 4           | .2 16 020 45 6                  |
| Married                | 66       | 31      | 35        | 0           | $\chi^2=16.828$ , df=6, p<0.010 |
| Divorced               | 21       | 12      | 5         | 0           | p<0.010                         |

Continued.

| Variables           | Received | Delayed | Defaulted | Rescheduled | Statistics                                                                           |
|---------------------|----------|---------|-----------|-------------|--------------------------------------------------------------------------------------|
| Education level     |          | -       |           |             |                                                                                      |
| No formal education | 20       | 17      | 20        | 0           |                                                                                      |
| Primary             | 16       | 15      | 21        | 1           | .2 25 146                                                                            |
| Secondary           | 36       | 15      | 26        | 2           | $\chi^2 = 25.146,$<br>$\chi^2 = 25.146,$<br>$\chi^2 = 25.146,$<br>$\chi^2 = 25.146,$ |
| Tertiary            | 32       | 18      | 13        | 1           | u1=12, p<0.014                                                                       |
| University          | 26       | 7       |           | 0           |                                                                                      |
| Religion            |          |         |           |             |                                                                                      |
| Christian           | 116      | 63      | 69        | 4           | $\chi^2=3.747$ ,                                                                     |
| Muslim              | 12       | 9       | 9         | 0           | df=6,p=0.711                                                                         |
| No religion         | 2        | 0       | 0         | 0           |                                                                                      |
| Occupation          |          |         |           |             |                                                                                      |
| Not employed        | 32       | 24      | 42        | 2           | $\chi^2$ =17.779, df=6,                                                              |
| Self employed       | 61       | 27      | 30        | 1           | p<0.007                                                                              |
| Employed            | 36       | 21      | 11        | 1           |                                                                                      |
| Settlement type     |          |         |           |             |                                                                                      |
| Rural               | 31       | 25      | 33        | 3           | $\chi^2$ =11.655, df=6,                                                              |
| Semi-urban          | 81       | 38      | 36        | 1           | p<0.070                                                                              |
| Urban               | 18       | 9       | 13        | 0           |                                                                                      |
| Monthly income      |          |         |           |             |                                                                                      |
| Below KES. 2500     | 24       | 18      | 29        | 1           | 2 22 121                                                                             |
| 2500-5000           | 15       | 9       | 10        | 2           | $\begin{array}{c} -\chi^2=23.131, \\ df=12, \\ p=0.027 \end{array}$                  |
| 5001-7500           | 42       | 11      | 21        | 1           |                                                                                      |
| 7501-10000          | 26       | 19      | 15        | 0           | — p=0.027                                                                            |
| Above KES 10,000    | 23       | 14      | 6         | 0           |                                                                                      |

### **DISCUSSION**

The purpose of this study was to determine the extent to which socio-demographic characteristics of dog bites patients influenced their adherence to the recommended treatment regimen. Overall, the results revealed that more females (57.8%) than males (42.2%) had sought treatment as a result of dog bites. This particularly striking as is not consistent with the findings of other similar studies. 10,13,14,19 In contrast to the current, the findings from these studies reported high numbers of males who had sought treatment after dog bites. The most affected age group by dog bites were aged between 22-32 years and married while those aged between 0-10 years were least affected. The study indicated that the majority as also found elsewhere. 13,19 However, nevertheless, in a study carried out in Machakos the most affected age groups were below 18 years and these findings did not match those of this study.4 There was a significant association between the age of the respondents and completion of rabies post-exposure prophylaxis treatment (p<0.012).

The study finding further revealed that majority (68.2%) of the attacks were from stray dogs and 31.8% were from pet dogs. Finding from a study done in south Bhutan showed that patients were highly exposed to pet dogs (45%) followed by stray dogs at (23%).<sup>17</sup> This finding were contrary from this study finding that revealed that majority of the patients were exposed to human rabies from stray dog attacks. A study that was conducted in Sri

Lanka equally revealed that majority (49%) of the patients that sough for rabies PEP.

The study findings indicated that 42.9% presented with upper limbs wounds, 42.2% with lower limbs wounds, 11.4% neck wounds and 3.5% head wounds from animal attacks. This study finds relate to finds from a study that was done by in a study by contradict with findings from the present study. 19,21 The study revealed that common site of bites the lower extremes 69.74% then the upper extremes 20.5%. Also, a study that was carried out by Penjor et al also do not conform to findings of the present study. 17 The study revealed that common site of bite was the lower limbs 52%, 40% upper limbs, head and neck 4% respectively.

Regarding the circumstance of bites, it was noted that majority 70.2% of the bites were unprovoked and 29.8% were provoked. This is in line with studies done by wadde et al and Rajeev et al. <sup>19,21</sup> However, contrary studies have also indicated that majority of the patients that presented for rabies PEP provoked the attacking animal. <sup>17</sup> In other studies, it is indicated that rabies post-exposure prophylaxis was more sought (54.1%) during dry season as compared to rainy season (45.9%).

The findings from this study indicated that 289 sought for rabies post-exposure prophylaxis treatment in the selected health facilities. A study conducted by Wangoda et al equally revealed majority of patients (74.8%) that sought for rabies poet-exposure prophylaxis were exposed to dog

bites. 10 These findings also confirmed with a study that was done in southern Bhutan majority (64.2%) of the patients that also sought for rabies PEP were victims of dog bites. 17 This study demonstrated that the majority of respondents resided in semi-urban settlements 54% within the county, these findings did not conform to findings from a study done by Penjor et al in Asia and Africa respectively that indicated that majority of respondents resided in the urban area. 17 This study equally noted that dog bites remain the major a major threat of spreading rabies virus in humans. 21

Studies done by Ngugi et al and Ravish et al showed that there was higher level of completion of anti-rabies PEP treatment doses among dog bite patients.<sup>22,23</sup> This study indicates the level of completion of dosage with the third dose being the most completed dose and did not reflect the type of PEP regimen that most patient preferred or indicated whether the patients that sought for rabies PEP treatment completed the prescribed schedules WHO guidelines. This study went further and identified the preferred regimen that the dog bite patients selected and the majority 61.6% of them picked the ZAGREB regimen while 37.4% selected the ESSEN regimen. The study further noted good uptake of the ZAGREB regimen 95.6% had a highest levels completion rate among dog bite patients in Kisii County.

It is prudent to acknowledge the limitations of the study as it will assist in conceptualizing the findings of this study and understand its limitations. In this case the study was limited to the fact that only patients that visited the selected facilities were included in the study. This may lead to bias in the results and conclusions of the study. The study is only looking at a sub-set of patients with dog bites.

Secondly, the study focused on dog bite patients. This limited other animal bites from this study. This may have resulted to biasness of the study findings and conclusions. The recall aspect of the patients as they were the reliable source of information to the study could lead to recall biasness of crucial information affecting the study findings and conclusion.

### **CONCLUSION**

The study concludes that in Kisii County, Females 57.8% the most affected gender with dog bites or dog attacks as compared to their male 42.2% counterparts. The study further revealed that the most affected age group was between 22-32 years 22.8%. From this study, it was evident that there was a significant relationship between age, marital status, education, monthly income, and completion of rabies post-exposure prophylaxis among dog bite patients. The study managed to determine predicators of socio-demographic factors and rabies post-exposure prophylaxis. The study has also revealed that the most affected part of the body was the upper limbs.

The current study also identified that the preferred regimen was ZAGREB.

#### Recommendations

This study is proposing scores of recommendations for the Kenyan Ministry of Health, Kisii County Medical Services, Public Health and Sanitation department to design messages and social behaviour change communication messages on dangers of dog bites, developing reporting tools to monitor dog bite treatment and compliance level and embrace or introduce mobile phone base interventions to remind dog bite patients on their next visits. The agriculture, fisheries, livestock development and irrigation department to conduct mass dog vaccination in the county.

### Recommendation for further research

This study recommends further similar studies be conducted in other hospitals in other counties to determine the adherence levels of rabies post-exposure prophylaxis completion. Additionally, there should be a study to determine the preferred anti-rabies vaccines post-exposure prophylaxis regimen among dog bite patients

#### **ACKNOWLEDGEMENTS**

We us the authors give special thanks to all the dog bites patients who participated in the study, the facilities medical superintendents, the county health services research office, the Kenyatta university, department of community health and epidemiology.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee of Kenyatta University (Ref No. ISERC/KTRH/006/22)

### **REFERENCES**

- 1. Gan H, Hou X. Global burden of rabies in 204 countries and territories, from 1990 to 2019: results from the Global Burden of Disease Study 2019. Int J Infect Dis. 2023;126:136-44.
- 2. World Health Organization; 2022. Rabies. Available from: https://www.woah.org/en/ disease/rabies/. Accessed on 2 December 2022.
- 3. Kainga H, Chatanga E, Phonera M. Current status and molecular epidemiology of rabies virus from different hosts and regions in Malawi. Arch Virol. 2023:168:61-79.
- 4. Mbilo C, Léchenne M, Hattendorf J, Madjadinan S, Anyiam F, Zinsstag J. Rabies awareness and dog ownership among rural northern and southern Chadian communities: Analysis of a community-based, cross-sectional household survey. Acta Tropica. 2017;175:100-11.

- Teklu G, Hailu T, Eshetu G. High incidence of human rabies exposure in northwestern Tigray, Ethiopia: A four-year retrospective study. PLoS Neglect Trop Dis. 2017;11(1):5271.
- 6. World Health Organization. Rationale for investing in the global elimination of dog-mediated human rabies. World Health Organization; 2015.
- 7. Venkatesan M, Dongre A, Ganapathy K. A community based cross sectional study of dog bites in children in a rural district of Tamil Nadu. Int J Med Sci Public Health. 2017;6(1):109.
- 8. Wallace R, Etheart M, Ludder F, Augustin P, Fenelon N, Franka R, et. al. The health impact of rabies in Haiti and recent developments on the path toward elimination, 2010-2015. Am J Trop Med Hyg. 2017;97(4):76-83.
- 9. Nelima K. Vertebrate Animal Bite / Scratch Injuries and Management among Patients Reporting at Kakamega Provincial General Hospital. 2010.
- Wangoda R, Nakibuuka J, Nyangoma E, Kizito S, Angida T. Animal bite injuries in the accident and emergency unit at Mulago hospital in Kampala, Uganda. Pan Afr Med J. 2019;33(112):16624.
- Zoonotic Disease Unit. Strategic plan for the elimination of Human Rabies in Kenya 2014-2030. Prepared for the Ministry of Health and Ministry of Agriculture, Livestock and Fisheries, Kenya; 2014.
- 12. Fisher A, Laing J, Stroker J. Operation research design in sampling. Washington, DC: Population Council; 2003.
- Gichohi A, Kombe Y, Mwaniki P, Mutahi J, Macharia A. Assessing factors associated with observed levels of adherence to anti-rabies pep vaccine among animal bite victims in Machakos level five hospital. Am J Health Med Nurs Pract. 2017;1(1):1-15.
- 14. Beyene T, Mourits M, Kidane A, Hogeveen H. Estimating the burden of rabies in Ethiopia by tracing dog bite victims. PLoS One. 2018;13(2):1-18.
- 15. Lhendup K, Wangdi K. Knowledge, Attitude and Practices of rabies during an outbreak in Samtse Municipality, Bhutan: A cross sectional study. Journal of Fam Med Prim Care. 2022;11:5361-8.
- 16. Mbilo C, Kabongo J, Pyana P, Nlonda L, Nzita, R, Luntadila B, et al. Dog ecology, bite incidence, and

- disease awareness: A cross-sectional survey among rabies-affected community in the democratic republic of Congo. Vaccines. 2019;7(98):1-21.
- 17. Penjor K, Tenzin T, Jamtsho R. Determinants of health seeking behavior of animal bite victims in rabies endemic South Bhutan: a community-based contact-tracing survey. BMC Public Health. 2019;19(237):1-11.
- 18. Sahu D, Preeti P, Bhatia V, Singh A. Anti-rabies vaccine compliance and knowledge of community health worker regarding animal bite management in rural area of eastern India. Cureus. 2021;13:1-9.
- 19. Wadde S, Edake S, Dixit V, Nagaonkar S. Non-compliance of post exposure prophylaxis amongst dog bite cases attending antirabies clinic of a tertiary care hospital- a record based study. Nat J Community Med. 2018;9(9):643-6.
- 20. Wallace R, Reses H, Franka R, Dilius P, Fenelon N, Orciari L, et al. Establishment of a high canine rabies burden in Haiti through the implementation of a novel surveillance program. PLoS Neglect Trop Dis. 2016;10(1):4354
- 21. Rajeev M, Edosoa G, Hanitriniaina C, Andriamandimby S, Guis H, Ramiandrasoa R, et al. Healthcare utilization, provisioning of post-exposure prophylaxis, and estimation of human rabies burden in Madagascar. Vaccine. 2019;37:A35-44.
- 22. Ngugi J, Maza A, Omolo J, Obonyo M. Epidemiology and surveillance of human animal-bite injuries and rabies post-exposure prophylaxis, in selected counties in Kenya, 2011-2016. BMC Public Health. 2018;18:1-9.
- 23. Ravish S, Kumari N, Ramya P, Iswarya S, Fotedar N. Assessment of post-exposure prophylaxis services for animal exposures in healthcare facilities of a municipal corporation. APCRI J. 2023;25(1):4-9.

Cite this article as: Ogugu NO, Mwanzo I, Gicheru MM. Adherence to post-exposure prophylaxis and associated socio-demographic characteristics of dog bite patients visiting selected health facilities in Kisii County, Kenya. Int J Community Med Public Health 2024:11:3824-33.