

Review Article

DOI: <https://dx.doi.org/10.18203/2394-6040.ijcmph20241986>

The evolution of adhesive dentistry: a review of materials and techniques

Turki M. Alotaibi^{1*}, Rawan K. Alhazmi², Faisal S. Aldrees³, Huda A. Alsakran³, Majed F. Alotaibi³, Monerah H. Alshathri⁴, Omar S. Alqahtani⁵, Ziad N. Almutawa⁶, Manal M. Alsaadoun⁷, Fahad I. Fatiny⁸

¹Dental Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

²Dental Department, King Fahad Armed Forces Hospital (KFAFH), Jeddah, Saudi Arabia

³Dental Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

⁴Dental Department, Presidency of State Security, Riyadh, Saudi Arabia

⁵Dental Department, Security Aviation, Riyadh, Saudi Arabia

⁶Dental Department, Ministry of Interior, Riyadh, Saudi Arabia

⁷Dental Department, Ministry of National Guard Health Affairs (MNGHA), Dammam, Saudi Arabia

⁸Dental Department, Al-Muzahmiya Medical Center, Riyadh, Saudi Arabia

Received: 14 July 2024

Accepted: 17 July 2024

***Correspondence:**

Dr. Turki M. Alotaibi,

E-mail: dr.turki.m@hotmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Adhesive dentistry has undergone remarkable advancements since its inception, fundamentally transforming restorative dental care. Initially marked by the development of early resins and etching techniques, adhesive dentistry has evolved to incorporate sophisticated materials and innovative techniques that significantly enhance clinical outcomes. The introduction of Bis-GMA resins in the 1960s improved mechanical properties and reduced polymerization shrinkage, paving the way for modern composite resins. These composites, enhanced by nanotechnology and advanced filler technology, provide superior strength, wear resistance, and esthetic qualities. Techniques such as selective enamel etching and multi-layering of adhesive systems have further improved bond strength and reduced technique sensitivity. The clinical applications of adhesive dentistry are extensive, ranging from direct and indirect restorations to cosmetic procedures and preventive measures. Direct composite restorations offer minimally invasive solutions with excellent esthetics, while indirect restorations such as inlays, onlays, and veneers benefit from strong, reliable bonds and improved durability. Cosmetic procedures, including veneers, achieve dramatic esthetic improvements with long-lasting results. Preventive applications, such as sealants, effectively protect against caries, especially in pediatric and high-caries-risk patients. The continuous refinement of materials and techniques has led to better clinical outcomes, increased patient satisfaction, and reduced need for invasive procedures. Advances in adhesive materials and methods have ensured that restorations not only mimic natural tooth structures but also maintain their integrity under functional forces. As research and development in adhesive dentistry continue to progress, the field is poised to offer even more innovative and effective solutions, further enhancing the quality of dental care. Overall, the evolution of adhesive dentistry underscores its pivotal role in modern dental practice, providing durable, esthetic, and reliable restorative options that meet the diverse needs of patients.

Keywords: Adhesive dentistry, Composite resins, Bond strength, Dental restorations, Nanotechnology

INTRODUCTION

Adhesive dentistry has revolutionized the field of restorative dental care by significantly enhancing the longevity, aesthetics, and functionality of dental restorations. The evolution of adhesive dentistry over the past few decades has been marked by substantial advancements in both materials and techniques, which have improved clinical outcomes and expanded the scope of dental treatments. Initially introduced in the mid-20th century, the concept of adhesive dentistry was a breakthrough that shifted the paradigm from mechanical retention to a chemical bonding approach, fostering more conservative tooth preparation and preservation of natural tooth structure.

The early stages of adhesive dentistry were characterized by the development of etching techniques and the introduction of composite resins, which laid the foundation for subsequent innovations. Buonocore's pioneering work in the 1950s demonstrated that phosphoric acid etching could significantly improve the adhesion of acrylic materials to enamel, marking the inception of adhesive dentistry.¹ This discovery spurred further research and development, leading to the formulation of increasingly sophisticated bonding agents and restorative materials. Throughout the 1980s and 1990s, the introduction of light-cured composites and advancements in bonding agents marked a significant leap in adhesive dentistry. These developments addressed earlier limitations, such as inadequate bond strength and marginal integrity, by enhancing the chemical properties and handling characteristics of dental materials.² Additionally, the advent of dentin bonding agents in the late 20th century expanded the applicability of adhesive techniques to include both enamel and dentin, thereby broadening the scope of restorative procedures and improving their predictability and durability.³

In the 21st century, the field of adhesive dentistry has continued to evolve with the introduction of nanotechnology, self-etching adhesives, and bulk-fill composites. Nanotechnology has played a pivotal role in enhancing the mechanical properties and aesthetic qualities of dental materials, enabling more durable and lifelike restorations. Meanwhile, self-etching adhesives have simplified the bonding process by reducing the number of steps required for application, thereby minimizing the risk of technique-sensitive errors.⁴ Bulk-fill composites, designed for faster and more efficient placement, have further streamlined restorative procedures while maintaining high standards of clinical performance. This review aims to explore the evolution of adhesive dentistry, focusing on significant advancements in materials and techniques.

REVIEW

The progression of adhesive dentistry has been marked by continuous innovation in both materials and techniques,

resulting in significant improvements in clinical outcomes and patient satisfaction. Early adhesive systems, though revolutionary, often faced challenges such as marginal leakage and inadequate bond strength. However, the introduction of modern adhesives and composites has largely mitigated these issues, enhancing the durability and reliability of dental restorations.

Nanotechnology has played a crucial role in this evolution, allowing for the development of nano-filled composites that exhibit superior mechanical properties and aesthetic qualities. These advancements have led to restorations that not only mimic the natural appearance of teeth but also provide enhanced resistance to wear and fracture.¹ The use of nano-fillers in composites has improved the polishability and translucency of restorative materials, thereby achieving a more lifelike appearance.

In addition to material improvements, advancements in bonding techniques have also significantly contributed to the success of adhesive dentistry. The development of self-etching adhesive systems has simplified the bonding process by reducing the number of clinical steps, thus minimizing technique sensitivity and the risk of operator error.² These systems combine the etching and priming steps, allowing for a more predictable and efficient bonding process while maintaining high bond strength to both enamel and dentin. Overall, the continuous refinement of materials and techniques in adhesive dentistry has revolutionized restorative procedures, making them more efficient, reliable, and aesthetically pleasing. The ongoing research and development in this field promise further advancements, ensuring that adhesive dentistry will continue to play a pivotal role in modern dental practice.

ADVANCEMENTS IN ADHESIVE MATERIALS: FROM EARLY RESINS TO MODERN COMPOSITES

The journey of adhesive materials in dentistry has seen remarkable progress from the initial introduction of early resins to the sophisticated modern composites we use today. The early stages of adhesive dentistry were marked by the development of resin-based materials, which provided a foundation for future advancements. Initially, the use of acrylic resins was a groundbreaking step, but these materials had limitations, such as polymerization shrinkage and inadequate bond strength to tooth structures.⁵ These early challenges necessitated the development of new materials and techniques to enhance the performance and reliability of adhesive restorations. The introduction of Bis-GMA (bisphenol A-glycidyl methacrylate) by Dr. Rafael Bowen in the 1960s was a significant milestone in the evolution of adhesive materials. Bis-GMA resins offered improved mechanical properties and reduced polymerization shrinkage compared to earlier acrylic resins, thereby enhancing the durability and clinical success of restorations.⁶ This innovation paved the way for the development of composite resins, which combined Bis-GMA with

inorganic fillers to further improve the material's strength and wear resistance.

Throughout the 1980s and 1990s, advancements in filler technology and the introduction of light-cured composites marked a new era in adhesive dentistry. Light-cured composites allowed for better control over the polymerization process, resulting in improved mechanical properties and aesthetic outcomes. The incorporation of smaller filler particles, including microfillers and nanofillers, enhanced the polishability and wear resistance of composite resins, making them more suitable for anterior and posterior restorations.⁷ These materials provided superior aesthetics and longevity, significantly improving patient satisfaction and clinical outcomes. In recent years, nanotechnology has played a pivotal role in the advancement of adhesive materials. The development of nano-hybrid and nano-filled composites has further enhanced the mechanical properties and aesthetic qualities of dental restorations. Nano-filters, due to their small size and high surface area, improve the distribution of stress within the composite material, thereby increasing its fracture toughness and wear resistance. Additionally, these materials offer enhanced translucency and polishability, resulting in more natural-looking restorations.⁸ The use of nanotechnology in adhesive materials has not only improved the clinical performance of restorations but also expanded the scope of their applications in both anterior and posterior regions of the mouth.

Overall, the evolution of adhesive materials from early resins to modern composites has significantly transformed restorative dental care. Continuous research and development in this field have led to the creation of materials that offer superior bond strength, durability, and aesthetics, thereby enhancing the overall quality of dental restorations. The advancements in adhesive materials have revolutionized the practice of dentistry, providing clinicians with tools to deliver more effective and aesthetically pleasing treatments to their patients.

TECHNIQUES FOR ENHANCED BOND STRENGTH AND LONGEVITY IN ADHESIVE DENTISTRY

The techniques employed in adhesive dentistry have evolved significantly, aimed at improving bond strength and ensuring the longevity of restorations. One of the primary advancements in this field has been the development and optimization of etching protocols. Initially, total-etch systems, which involved etching both enamel and dentin simultaneously with phosphoric acid, were widely used. This method effectively increased bond strength to enamel but often led to post-operative sensitivity due to over-etching of dentin.⁹ To address this, self-etch adhesives were introduced, which combine etching and priming in a single step, thereby reducing technique sensitivity and minimizing the risk of over-etching dentin while still achieving adequate bond strength.¹⁰ Another significant technique that has contributed to enhanced bond strength is the application of adhesive systems in multiple layers. Multi-layering

involves applying several coats of adhesive resin to ensure thorough infiltration into the demineralized dentin matrix and to create a more robust hybrid layer. Studies have shown that this approach can significantly improve the mechanical properties and longevity of the bonded interface, thereby reducing the likelihood of bond failure over time.¹¹

The use of selective enamel etching has become increasingly popular. This technique involves selectively etching the enamel margins with phosphoric acid while leaving the dentin to be conditioned by self-etch primers. This hybrid approach leverages the high bond strength of total-etch systems on enamel and the reduced sensitivity of self-etch systems on dentin, thereby optimizing the bonding process and enhancing the overall durability of the restoration.¹² Selective enamel etching has been particularly beneficial in cases where esthetic outcomes are critical, such as in anterior restorations, as it provides a strong, stable bond at the enamel margins while preserving the integrity of the dentin. Furthermore, advances in curing techniques have also played a crucial role in enhancing the performance of adhesive restorations. The introduction of high-intensity LED curing lights has improved the degree of polymerization of adhesive resins, resulting in stronger and more durable bonds. Proper curing is essential to ensure that the adhesive resin fully polymerizes and achieves its maximum mechanical properties. Inadequate curing can lead to weak bonds and premature failure of the restoration.¹³ The continuous refinement of adhesive techniques has significantly contributed to the enhanced bond strength and longevity of dental restorations. From optimizing etching protocols to employing advanced curing methods, these innovations have improved the clinical success of adhesive dentistry, providing patients with more durable and reliable restorative solutions.

CLINICAL APPLICATIONS AND OUTCOMES OF ADHESIVE DENTISTRY IN CONTEMPORARY PRACTICE

Adhesive dentistry has dramatically transformed clinical practice, offering versatile solutions for a wide range of restorative and cosmetic dental procedures. One of the primary clinical applications of adhesive dentistry is in direct composite restorations. These restorations are favored for their ability to bond directly to tooth structures, providing excellent esthetics and preserving more natural tooth tissue compared to traditional amalgam fillings. The minimally invasive nature of direct composites allows for more conservative cavity preparations, which is beneficial for the long-term health of the tooth.¹⁴

Indirect restorations, such as inlays, onlays, and veneers, also significantly benefit from advancements in adhesive dentistry. These restorations require strong and reliable bonds to withstand the occlusal forces in the oral environment. The development of high-performance adhesive systems has improved the success rates of these restorations by enhancing their durability and reducing the risk of debonding and secondary caries.¹⁵ Additionally, the esthetic outcomes of indirect restorations have been greatly

improved by the ability of modern adhesives to provide seamless integration with natural tooth structures, thereby achieving highly esthetic and lifelike results.

Adhesive dentistry has also expanded the possibilities for cosmetic dental procedures. Veneers, for example, have become a popular option for patients seeking to improve the appearance of their teeth. These thin, custom-made shells are bonded to the front surfaces of teeth using advanced adhesive techniques, resulting in dramatic improvements in the color, shape, and alignment of the teeth. The strong and durable bond created by modern adhesives ensures that veneers can withstand normal functional forces and provide long-lasting esthetic benefits.¹⁶ In addition to restorative and cosmetic applications, adhesive dentistry has played a crucial role in the success of preventive procedures. Sealants, which are applied to the occlusal surfaces of molars and premolars to prevent caries, rely on adhesive technology to ensure their retention and effectiveness. The ability of adhesives to bond strongly to enamel and resist mechanical wear makes sealants a valuable tool in preventive dental care, especially for pediatric and high-caries-risk patients.¹⁷

The clinical outcomes of adhesive dentistry are also evident in the improved patient satisfaction and reduced need for invasive procedures. Patients benefit from the minimally invasive nature of adhesive techniques, which preserve more of their natural tooth structure and reduce the need for extensive tooth preparation. This not only enhances the overall esthetic outcomes but also contributes to the long-term health and functionality of the teeth. Moreover, the durability and reliability of adhesive restorations have reduced the frequency of repair and replacement procedures, leading to better long-term outcomes for patients. Adhesive dentistry has revolutionized contemporary dental practice by offering versatile and effective solutions for a wide range of clinical applications. The advancements in adhesive materials and techniques have improved the durability, esthetics, and clinical success of both direct and indirect restorations, as well as preventive and cosmetic procedures, enhancing the overall quality of dental care.

CONCLUSION

The evolution of adhesive dentistry, characterized by significant advancements in materials and techniques, has profoundly transformed restorative dental care. These innovations have led to improved bond strength, durability, and esthetic outcomes, enhancing both the clinical success of dental treatments and patient satisfaction. As research and development continue, adhesive dentistry is poised to further advance, providing even more effective and reliable solutions for modern dental practice.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. *J Dent Res.* 1955;34(6):849-53.
2. Bowen R. Properties of a silica-reinforced polymer for dental restorations. *J Am Dent Assoc.* 1963;66(1):57-64.
3. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates. *J Biomed Materials Res.* 1982;16(3):265-73.
4. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Adhesion to enamel and dentin: current status and future challenges. *Operative Dentistry-University of Washington.* 2003;28(3):215-35.
5. Gwinnett A. Adhesives and caries prevention-A preliminary report. *Br Dent J.* 1965;119:77-80.
6. Bowen R. Adhesive bonding of various materials to hard tooth tissues. II. Bonding to dentin promoted by a surface-active comonomer. *J Denl Res.* 1965;44(5):895-902.
7. Ferracane JL. Resin composite—state of the art. *Dent Materials.* 2011;27(1):29-38.
8. Bayne SC, Thompson JY, Swift Jr EJ, Stamatides P, Wilkerson M. A characterization of first-generation flowable composites. *J Am Dent Assoc.* 1998;129(5):567-77.
9. Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, et al. State of the art etch-and-rinse adhesives. *Dent Materials.* 2011;27(1):1-16.
10. Van Meerbeek B. Buonocore Memorial Lecture. Adhesion to enamel and dentin: current status and future challenges. *Oper Dent.* 2003;28:215-35.
11. Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt K. State of the art of self-etch adhesives. *Dent Materials.* 2011;27(1):17-28.
12. Perdigão J, Dutra-Correa M, Anauate-Netto C, Castilhos N, Carmo AR, Lewgoy HR, et al. Two-year clinical evaluation of self-etching adhesives in posterior restorations. *J Adhesive Dent.* 2009;11(2).
13. Rueggeberg FA, Caughman WF, Curtis Jr J, Davis H. Factors affecting cure at depths within light-activated resin composites. *Am J Dent.* 1993;6(2):91-5.
14. Nathe C. Review of: Fundamentals of Operative Dentistry: A Contemporary Approach. In: American Dental Hygienists' Association. 2007.
15. Shah DN. The Biomimetic Restorative Approach. *Dental Update.* 2021;48(1):13-20.
16. Peumans M, Van Meerbeek B, Lambrechts P, Vanherle G. Porcelain veneers: a review of the literature. *J Dentistry.* 2000;28(3):163-77.
17. Simonsen RJ. Pit and fissure sealant: review of the literature. *Pediatr Dent.* 2002;24(5):393-414.

Cite this article as: Alotaibi TM, Alhazmi RK, Aldrees FS, Alsakran HA, Alotaibi MF, Alshathri MH, et al. The evolution of adhesive dentistry: a review of materials and techniques. *Int J Community Med Public Health* 2024;11:3249-52.