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INTRODUCTION 

Terahertz (THz) waves, falling within the frequency range 

of 0.1 to 10 THz, occupy a unique position in the 

electromagnetic spectrum, bridging the realms of 

microwave and infrared wavelengths.1 This positioning 

affords THz waves a hybrid nature, inheriting 

characteristics from both spectra. Notably nonionizing and 

non-invasive, THz waves exhibit phase sensitivity to polar 

substances, facilitating applications such as spectral 

fingerprinting and coherent detection.2 With impressive 

resolution capabilities of up to 50 μm and notable 

penetration abilities, THz waves present promising 

avenues across various domains, including medicine, 

oncology, dentistry, and biology. Particularly in medical 

contexts, their non-ionizing nature renders them suitable 

for both in vivo and ex-vivo inspection with minimal harm. 

THz spectroscopy emerges as a pivotal tool for qualitative 

and quantitative analysis of cancer biomarkers, offering 

the capacity to differentiate substances based on molecular 

structure, polymorph, and chirality. While microwave 

spectroscopy shares some capabilities, its longer 

wavelength imparts comparatively lower resolution, 

underscoring the superiority of THz waves in this regard. 

In cancer diagnosis and surgery, THz imaging proves 

invaluable, enabling the discrimination of cancerous and 

peritumoral tissues from normal tissue with clear 

delineation. However, the depth of penetration is 

constrained by water absorption, limiting its utility 

primarily to surface or excised tissue imaging. Despite this 

limitation, rapid tissue imaging during surgery is 

facilitated by THz technologies. Biomarker detection, 
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crucial in cancer diagnosis, benefits greatly from THz 

spectroscopy's ability to swiftly and accurately identify 

spectral "fingerprints" associated with different 

substances. As a potential tool for rapid cancer staging, 

THz spectroscopy, when combined with advanced 

algorithms, holds promise. Nonetheless, challenges 

persist, particularly regarding the signal-to-noise ratio 

(SNR) in spectral results due to limitations in THz source 

energy. Efforts to enhance spectral SNR are underway, 

aiming to improve biomarker detection in mixed samples 

and bolster the efficacy of THz imaging and spectroscopy 

in medical applications. 

APPLICATIONS OF TERAHERTZ WAVES 

Table 1 provides a short summary of studies on THz for 

ex-vivo applications. In their recent review, Peng et al 

delved into the application of THz imaging and 

spectroscopy in cancer diagnosis over the past five years, 

emphasizing the critical role of early detection in 

improving patient outcomes. Their examination revealed 

that THz imaging holds promise in effectively 

distinguishing cancerous tissue from normal tissue, 

primarily leveraging disparities in water content. However, 

the limited penetration depth of THz waves, restricted to 

approximately 1mm due to their high absorption by water 

and tissue components, currently confines the application 

of THz imaging in oncology to excised tissues or surface 

layer examination through reflection imaging systems.3 

Over the last five years, only two studies have achieved 

successful in vivo imaging utilizing a pulsed THz 

reflectometric imaging system. Ji et al successfully 

obtained images of gliomas in live tumour model mice, 

achieving a resolution of 250 μm, where tumour tissue 

exhibited a higher intensity signal compared to adjacent 

normal tissue.15 Similarly, Wu et al obtained images of 

brain gliomas in model mice with a resolution of 200 μm 

using a THz reflection imaging system with 2.52 THz 

continuous waves.16 Despite these advancements, in vivo 

THz imaging research remains primarily in its 

experimental stages. 

Challenges persist in human-based studies, notably the 

complexity of human tissue composition compared to 

mouse tissue, leading to biased spectral analysis. 

Additionally, individual variations in tissue content 

contribute to discrepancies in THz wave absorption and 

refraction among subjects, hindering accurate 

identification of cancerous areas. Recent efforts have 

integrated algorithms to differentiate cancerous tissue from 

normal tissue based on spectral differences, yielding 

promising results. For instance, Qi et al combined THz 

spectroscopy with a fuzzy rule-building expert system 

(FuRES) and fuzzy optimal associative memory (FOAM) 

for cervical carcinoma diagnosis, achieving a classification 

accuracy of 92.9±0.4% for FuRES and 92.5±0.4% for 

FOAM in a test involving 52 cervical tissue sections.17 

Similarly, Liu et al merged THz spectroscopy with 

principal component analysis, locality preserving 

projections (LPP), and Isomap for hepatic tumour 

identification.18  

In parallel, Ajito has demonstrated the versatile 

implementation of THz spectroscopy in pharmaceuticals, 

life sciences, and medical diagnostics.19 Operating within 

the frequency range between radio waves and light, THz 

waves offer molecular-level insights into various 

phenomena, including crystalline phonon modes, low-

frequency molecular vibration modes, and gas rotation 

modes. Notably, THz spectroscopy excels in capturing 

lower modes of molecular vibration associated with 

intermolecular bonds, providing valuable molecular 

network information critical in understanding protein 

conformations, drug efficacy, and molecular interactions 

in the life sciences and biotechnology fields (Figure 1). 

 

Figure 1: Molecular information that can be obtained 

from THz waves (A) characteristic absorption 

frequencies of molecules and crystals in the 

microwave, THz-wave, and infrared domains (2008 

The Japan Society of Analytical Chemistry, with 

alterations); and (B) schematic illustration of the 

relationship between molecular networks, THz 

spectra, and THz images corresponding to each peak. 

THz spectroscopy emerges as a distinctive tool for 

scrutinizing molecules or crystalline structures that engage 

in weak interactions, such as hydrogen bonds and weak 

intermolecular interactions. Offering versatility in 

accommodating various sample forms, THz spectroscopy 

supports multiple measurement methods, including 

transmission, reflection, attenuated total reflection (ATR), 

and polarization measurements. While transmission 
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measurements are straightforward, ATR proves more 

effective with samples in water and highly polar solvents 

due to their strong absorption at THz frequencies. 

Employing ATR involves closely contacting the sample 

material with a high refractive index crystalline medium, 

allowing total reflection at the interface and measurement 

of the reflected THz radiation, thereby enabling spectrum 

acquisition based on absorption strength. 

THz chemical imaging (TCI) provides a valuable 

technique for discerning the two-dimensional or three-

dimensional distribution of molecules based on a sample's 

THz absorption spectrum. This method proves particularly 

useful in analysing the distribution and concentration of 

chemical substances within samples. Furthermore, the 

ability of THz waves to traverse non-polar materials like 

plastics and paper commonly used in packaging facilitates 

the imaging and analysis of pharmaceuticals concealed 

behind THz-transparent materials.20-23 THz radiation's 

minimal impact on materials renders it suitable for non-

invasive detection of biological materials, rendering TCI 

especially promising for analysing living materials or 

medical samples, including teeth, skin, and cancer tissue. 

In the realm of medical diagnostics, the application of THz 

technology holds considerable significance. Despite being 

in the nascent stages, numerous studies have explored its 

potential applications, including the diagnosis of burns, 

identification of pathologies, and detection of foreign 

matter through THz tomography. THz spectroscopy, 

particularly utilizing techniques like THz time-domain 

spectroscopy, offers insights into molecular "fingerprints," 

aiding in the detection of hazardous chemicals, drugs, and 

diseases through express-analysis of exhaled gases and 

quality control of food and agricultural products. THz 

spectroscopy's capability to discern the structure and 

dynamics of proteins and DNA, as well as differences in 

tissue humidity, structure, and chemical composition, 

underscores its potential for early disease diagnosis. 

Advancements in THz systems for biomedical research 

hinge upon the development of enhanced light sources and 

detectors with improved characteristics. Promising 

directions include quantum cascade and graphene lasers, 

along with photoconductive antennas featuring plasmon 

nanoelectrodes, which obviate the need for cryogenic 

cooling systems and offer adjustable operating frequencies 

and bandwidths, crucial for both emission and detection 

modes. 

In a related article, Fu et al provide comprehensive insights 

into the progress of terahertz spectroscopic techniques for 

substance detection and recognition across various 

domains, including biomedicine, agriculture, food 

production, and security inspection, highlighting the 

fundamental principles and diverse applications of 

terahertz spectroscopy.24 

The advantages of THz spectroscopy in substance 

detection and identification encompass a range of critical 

attributes, including biosafety, unique identification 

properties, impressive penetration capabilities, coherence, 

high resolution, and the detection of both micro and trace 

substances. Presently, across disciplines such as 

biomedicine, security inspection, agriculture, and artwork 

identification, researchers increasingly favour 

spectroscopic techniques tailored to specific substances 

(Figure 2). 

Table 1: Summary of ex-vivo THz imaging studies. 

Authors, Years THz system Imaging target Results 

Martin et al, 

20164 

A continuous-wave THz 

imaging system working at 

0.584 THz with circular 

polarization  

Fresh tumor and normal 

human skin tissue 

specimens  

Contrast between cancerous and normal 

tissues was found with a resolution of 

0.15 mm  

Bowman et al, 

20165 

A pulsed THz imaging and 

spectroscopy system  

Excised paraffin-

embedded breast tissue 

with breast invasive 

ductal carcinoma  

The carcinoma areas exhibited lower 

transmission and higher reflection than 

normal areas as defined based on 

pathology  

Yamaguchi et al, 

20166 

A reflection THz time-

domain spectroscopy 

system  

Fresh and paraffin-

embedded tissues from a 

rat glioma model  

A difference of 0.02 (0.8–1.5 THz) in the 

refractive index was found between 

glioma and normal area  

Wahaia et al, 

20167 

A continuous-wave THz 

imaging system working at 

0.59 THz  

Dehydrated human 

colon tissues  
The imaging resolution reached 500 μm  

Grootendorst et 

al, 20178 

A handheld THz pulsed 

imaging system  

Freshly excised breast 

cancer samples  

The identification accuracy of cancerous 

areas reached 75%  

Bowman et al, 

20189 

A pulsed THz imaging and 

spectroscopy system  

Freshly excised murine 

xenograft breast cancer 

tumors  

Comparison with pathology results 

showed an accuracy above 80%  

Continued. 
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Authors, Years THz system Imaging target Results 

Cassar et al, 

201810 

A pulsed THz imaging 

system with a reflection 

mode  

Freshly excised breast 

tissue  
The spatial resolution reached 1 mm  

Vohra et al, 

201811 

A pulsed THz imaging 

system with a reflection 

mode  

Freshly excised and 

formalin/paraffin-fixed 

breast tumor tissues 

from a mouse model  

Cancerous areas exhibited the highest 

reflection and agreed with the pathology 

results  

Yeo et al, 201912 
A pulsed THz imaging 

system with a reflection 

mode  

Paraffin-embedded 

malignant tissues in 

human lung and small 

intestine tissues  

The adipose tissue area showed a lower 

refractive index and with a diffraction-

limited spot size 

of ∼360 μm at 1 THz  

Okada et al, 

201913 

A scanning laser THz near-

field reflection imaging 

system  

Paraffin-embedded 

human breast tissue  
The spatial resolution reached 20 μm  

Bowman et al, 

201914 

A pulsed THz imaging and 

spectroscopy system  

Freshly excised breast 

cancer tumors  

The cancerous areas exhibited higher 

absorption coefficients and refractive 

indexes than normal tissues, and the 

resolution reached 200 μm  

 

Figure 2: Terahertz spectroscopy and some typical applications. Reproduced with permissions. © 2013 Chinese 

Physical Society and IOP Publishing Ltd. © 2017 IEEE. © 2020 Springer Science Business Media, LLC.

WAY FORWARD 

To propel the application of terahertz spectroscopy 

forward, the establishment of a more comprehensive THz 

spectrum database is imperative. Achieving this goal 

demands thorough investigations across diverse materials 

using terahertz spectroscopy, which will serve to augment 

and refine existing data. Nonetheless, it is essential to 

acknowledge the inherent limitations of THz waves, 

including constraints in penetration depth, cost, and 

resolution. 

CONCLUSION  

In summary, our review of recent research papers delves 

into the application of THz radiation for diagnosing and 

treating various diseases and conditions, with a primary 

focus on its medical implementation. This examination 

elucidates the comprehensive understanding and 

advantages of THz waves over conventional radiation 

sources, highlighting their potential to revolutionize 

medical diagnostics and treatment modalities. 
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