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INTRODUCTION 

Cancer treatment stands out as one of the most expensive 

healthcare burdens in India, with individuals facing a six-

fold higher risk of impoverishment from the substantial 

out-of-pocket costs compared to those associated with 

infectious diseases.1 In the United States, average cost of 

medical care and drugs surpass $42,000 in the year 

following a cancer diagnosis.2 To compound the financial 

strain, more than 80% of cancer patients exit the 

workforce during their initial treatment, leading to 

significant economic challenges.3 Consequently, more 

than 40% of patients deplete their entire life savings 

within the first two years of treatment.3 Additionally, 

approximately 30% of Americans with a history of cancer 

report encountering difficulties paying their medical bills, 

resorting to borrowing money, or even filing for 

bankruptcy protection due to their cancer-related 

expenses.4 The term financial toxicity refers to the 

combination of high costs of cancer treatment and 

detrimental consequences such as diminished health-

related quality of life, treatment nonadherence, 

employment disruption, bankruptcy, premature mortality, 
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and maladaptive behaviours.5-9 This burden is pervasive, 

with 48%-73% of cancer survivors reporting experiencing 

some deleterious effects of financial toxicity.10 

Considering the range of emotions endured by cancer 

patients such as fear, anxiety, anger, depression, despair, 

and helplessness, it is understandable that they utilize the 

connectivity of social media platforms for health-related 

discussions and to express personal sentiments.11 Cancer 

patients are notably active on Twitter and their tweets 

predominantly focus on emotional exchanges, including 

greetings, treatment discussions, and expressions of 

emotions.12-14 Unlike other social media platforms such as 

Facebook, Instagram, or Snapchat, Twitter exhibits a 

more relaxed attitude towards the sharing of negative 

emotions, possibly due to the platform's anonymity in 

interactions.15 This characteristic may be particularly 

beneficial for cancer patients, providing them with a 

comfortable outlet to express negative thoughts and 

feelings.16 

While the public disclosure of official medical records is 

often met with reluctance by most individuals, many 

patients display a readiness to share health-related content 

on social media platforms.17 Additionally, these patients 

exhibit a willingness to authorize the integration of their 

social interactions with personal electronic medical 

record (EMR) data.18 This growing acceptance of social 

media as a platform for health-related networking reflects 

patients' inclination towards engaging through this 

medium.19 Earlier investigations have established the 

foundation for analysing sentiment in social media within 

the realm of healthcare research.20-23 Consequently, this 

study investigates a novel approach for detecting financial 

strain in cancer patients by examining social media 

content, such as Tweets. This method holds promise for 

providing customized financial assistance to vulnerable 

population cohorts who express their financial challenges 

related to cancer treatment through Tweets, yet may be 

reluctant to communicate these issues with their 

healthcare providers. However, not unlike other 

emotional expressions on social media, indication of 

financial toxicity in Tweets may be subtle, making them 

not readily apparent to human readers. These subtle cues 

may be reflected in the nuances of the Twitter user’s 

language and tone, which can be discerned by machine 

learning (ML) algorithms. ML, a branch of artificial 

intelligence, utilizes automated mathematical model 

creation to iteratively learn from input data, enabling the 

identification and prediction of future states.24-27 By 

comparing Tweets of cancer patients with and without 

financial toxicity during the training process, ML 

algorithms can effectively identify financial toxicity. 

The primary objective of this study was to investigate the 

potential of a supervised ML algorithm (Multinomial 

Naïve Bayes) to predict financial toxicity in cancer 

patients based on their Tweets. These predictions can 

guide financial navigators in health systems and cancer 

centres to mitigate financial toxicity during cancer 

treatment or facilitate tailored financial assistance for 

affected patients. 

METHODS 

This study was conducted between November 2023 and 

February 2024. A visual representation of the 

methodology employed in this study is depicted      

(Figure 1). 

 

Figure 1: Methodology employed in this study. 
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Tools 

Python libraries including pandas, scikit-learn, 

statsmodel, matplotlib, wordcloud, and seaborn were 

utilized to build the ML classification model. ChatGPT 

3.5, OpenAI’s large language model (LLM) and Claude, 

Anthropic’s LLM were used in the generation of 

synthetic Tweets. 

Creation of the Tweets dataset 

The initial data collection process involved utilizing the 

Twitter application programming interface (API), 

necessitating the establishment of a Twitter developer 

subscription account to extract tweets. Access token, 

access token secret, API key, and API secret key were 

generated through the developer account to facilitate the 

authorization process for collecting Tweets. A 

combination of keywords namely cancer, debt, and help 

were employed to retrieve Tweets concerning both cancer 

and financial toxicity (henceforth referred as “financial 

toxic” Tweets). Conversely, a combination of keywords 

namely cancer, and treatment were utilized to extract 

Tweets related to cancer but not associated with financial 

toxicity (henceforth referred as “non-financial toxic” 

Tweets).  

The author meticulously assessed each Tweet and 

categorized them as either exhibiting financial toxicity or 

not. Tweets that did not fall into either category, along 

with repeat Tweets were excluded. Each Tweet was 

sanitized to eliminate hyperlinks, retweets, emojis, and 

hashtags, ensuring that Tweets were appropriate inputs 

for the ML classification model. Following the 

sanitization process, 20 financial toxic Tweets and 57 

non-financial toxic Tweets related to cancer were selected 

(henceforth, collectively referred to as “Original 

Tweets”).  

The Tweet collection process proved to be slow due to 

the request rate limits imposed by Twitter. Throughout 

the collection process, the occurrence of Tweets 

indicative of financial toxicity was relatively low 

compared to the abundance of those not related to 

financial toxicity. Access to historical Tweets was 

constrained by the limitations of the Twitter developer 

subscription utilized in this study, which restricted 

sampling to Tweets published within the previous 7 days. 

Although the data collection process could have been 

prolonged for several additional months, a prolongation 

was deemed suboptimal for this limited budget study due 

to its potential economic, resource and time implications. 

Hence, it was decided to augment and balance the 

Original Tweets data using synthetic Tweets. The 

background and methodology for generating synthetic 

data is elaborated below. 

From the process of data annotation, to dataset 

generation, synthetic data offers unprecedented flexibility 

in the models trained. LLMs have been employed in 

previous research to annotate data directly in zero-shot 

scenarios.28-30 In scenarios with limited resources, low 

volume and imbalanced datasets, supplementing datasets 

with synthetic data has demonstrated the potential to 

enhance model performance across various natural 

language processing (NLP) tasks, including sarcasm 

detection, translation and sentiment analysis; for a 

comprehensive overview, refer to Feng et al.31-34 Recent 

research has expanded beyond data augmentation to the 

creation of entirely synthetic datasets.35  

In this study, synthetic Tweets representing both financial 

toxic and non-financial toxic categories to augment the 

dataset were created by providing specific prompts to 

ChatGPT 3.5 and Claude. The prompts utilized for 

generating synthetic Tweets are outlined (Table 1). The 

prompt used to create synthetic financial-toxic Tweets 

involved adapting the elements of the cancer-specific 

COmprehensive Score for financial Toxicity (COST) 

questionnaire, but modifying the elements to mimic a 

cancer patient experiencing financial hardship.36,37 

Furthermore, this prompt leveraged the prevalent 

financial difficulty themes faced by individuals dealing 

with cancer.38 

After generation of synthetic tweets, a simple program 

was employed to examine the text of all synthetic Tweets 

and filter out any repetitive ones. The author meticulously 

reviewed each Tweet to confirm that it exhibited financial 

toxicity or not. Furthermore, each synthetic Tweet 

underwent a sanitization process to remove index 

numbers, and hashtags if present, ensuring suitability for 

input into the ML classification model. 

A total of 929 Tweets comprising of synthetic Tweets and 

Original Tweets were aggregated into a single .csv file. 

The final Tweets dataset comprised 403 financial toxic 

Tweets, designated with a polarity of 1, and 526 non-

financial toxic Tweets, assigned a polarity of 0 are shown 

(Figure 2). A selection of illustrative financial toxic and 

non-financial toxic Tweets is presented (Table 2). 

Table 1: Prompts used to generate synthetic Tweets. 

Prompt for financial toxic Tweets 
Prompt for non-financial  

toxic Tweets 

Generate [specify number] different tweets as if written by cancer patients. You 

can base each of the tweets by selecting randomly from one of the below: 

1. I know that I do not have enough money in savings, retirement, or assets to 

cover the costs of my treatment 

2. My out-of-pocket medical expenses are more than I thought they would be 

Generate [specify number] 

different tweets related to 

cancer and as if written by 

cancer patients. Include a 

good mix of tweets related to 

Continued. 
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Prompt for financial toxic Tweets 
Prompt for non-financial  

toxic Tweets 

3. I worry about the financial problems I will have in the future because of my 

illness or treatment 

4. I feel I have no choice about the amount of money I spend on care 

5. I am frustrated that I cannot work or contribute as much as I usually do 

6. I am not satisfied with my current financial situation 

7. I am unable to meet my monthly expenses 

8. I feel financially stressed 

9. am concerned about keeping my job and income, including paid work at home 

10. My cancer or treatment has reduced my satisfaction with my present financial 

situation 

11. I do not feel in control of my financial situation 

12. My illness has been a financial hardship to my family and me 

In addition, you can leverage the seven themes below to help generate the tweets: 

(1) the burden of travel, (2) a willingness to pursue treatment despite financial 

risk, (3) fear of destitution, (4) financial toxicity equaling physical toxicity, (5) 

changes in food spending, (6) reluctance to confide in the study investigator or 

financial navigator about financial toxicity, and (7) difficulty navigating financial 

aid 

diagnosis, treatment, 

recovery, strides being made 

in cancer research and other 

cancer associated topics. 

Tweets should not be related 

to financial burden of cancer. 

Do not repeat tweets that have 

been previously generated or 

repeat any tweets within this 

cluster. Do not number the 

tweets as 1, 2, 3, etc. Do not 

include hashtags. Be creative. 

 

Machine learning classification 

Term frequency-inverse document frequency technique 

This study leverages the Term Frequency-Inverse 

Document Frequency (TF-IDF) technique in NLP. TF-

IDF operates by evaluating the importance of a term 

within a document (“document” corresponds to an 

individual Tweet) relative to a larger corpus of documents 

(“corpus” corresponds to the collection of all the Tweets). 

It accomplishes this by computing two key components: 

term frequency (TF), which measures the frequency of a 

term within a document, and inverse document frequency 

(IDF), which assesses the rarity of a term across the entire 

corpus. By combining these metrics, TF-IDF assigns 

higher weights to terms that are prevalent within a 

document and infrequent across the corpus, effectively 

highlighting terms that are both relevant and distinctive. 

In the realm of sentiment analysis, TF-IDF proves 

particularly beneficial for binary classification tasks. In 

this study, TF-IDF is utilized to convert textual Tweet 

data into numerical feature vectors, that are subsequently 

used by the Multinomial Naïve Bayes classification 

algorithm as discussed below in Section 2.3.2 

 

Figure 2: Distribution of (a) financial toxic (polarity 1) 

Tweets, and (b) non-financial toxic (polarity 0) Tweets 

in final Tweets dataset. 

 

Table 2: An illustrative selection of financial toxic Tweets and non-financial toxic Tweets. 

Financial toxic Tweets Non-financial toxic Tweets 

Cancer has not only taken a toll on my health but 

also on my finances. It's a double hardship for me 

and my family. 

Cancer may be a part of your journey, but it does not define 

your destination. Keep moving forward with courage and 

hope. 

Changes in food spending have become necessary 

adjustments during my treatment. It's disheartening 

to see how illness affects every aspect of life, even the 

grocery budget. 

Behind every statistic is a story—a life impacted by cancer. 

That's why we must continue to invest in research and 

support for all those affected. 

The amount of money I spend on care feels out of my 

control. I'll do whatever it takes to beat cancer, even 

if it means going into debt. 

No texting and driving cancer cells! New med blocks 

signals to keep tumors from distracting multi-task division! 

Continued. 
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Financial toxic Tweets Non-financial toxic Tweets 

The burden of travel for treatment is overwhelming. 

Not only do I worry about medical expenses, but also 

the costs of transportation and accommodation. 

Stop copying me, cancer! New drug blocks genetic Xerox 

machine to keep tumors from spreading their mutations! 

Despite the financial strain, I'll continue to pursue 

treatment. My health is worth any cost, even if it 

means sacrificing financially. 

To all the caregivers supporting loved ones through cancer: 

your unwavering love and support make all the difference. 

I used my entire 401k to pay for cancer treatment 

last year. Now I have nothing saved for retirement 

and I'm only 50. 

We've got cancer on the run! Researchers sprint ahead 

developing cutting-edge immunotherapies. 

 

Multinomial Naïve Bayes classification 

Multinomial Naïve Bayes is a probabilistic classification 

algorithm that is widely used in text classification and 

sentiment analysis. It is based on Bayes' theorem, with a 

"naive" assumption that features are independent of each 

other, given the class label. Despite its simplicity and the 

strong independence assumptions, Naïve Bayes 

demonstrates computational efficiency and practical 

effectiveness, particularly with short texts like    

Tweets.39-42 Consequently, Multinomial Naïve Bayes was 

selected for this analysis to predict financial toxicity in 

Tweets. 

Data were randomly divided into training and test 

samples using an 80:20 ratio. The assessment of model 

performance employed various metrics, including 

accuracy, precision, recall, specificity, and F-1 score as 

outlined (Table 3). In addition, the area-under-the-

receiver-operating-characteristics-curve (AUROC) was 

also determined. 

Table 3: Definition of model performance metrics. 

Performance Metric Definition 

Precision 
True Positives

True Positives + False Positives
 

Recall (sensitivity) 
True Positives

True Positives + False Negative
 

Accuracy 
True Positives + True Negatives

True Positives + False Negative + True Negative + False Positives
 

F-1 Score 

2 × Precision × Recall

Precision + Recall
 

 

 

RESULTS 

Wordcloud visualization 

Wordcloud, a data visualization tool that represents word 

frequency through graphical depiction, was employed to 

visualize the frequent terms in financial toxic tweets and 

non-financial toxicity tweets (Figure 3 and Figure 4). The 

Wordcloud associated with financial toxicity displays 

terms including financial, cost, debt, saving (Figure 3). 

Conversely, the Wordcloud that illustrates a high 

frequency of terms typically unrelated to financial 

toxicity, such as strength, fight, love, cancer-free, 

resilience is shown (Figure 4). 

Model performance 

Accuracy, precision, recall, specificity, F-1 score, and 

AUROC were determined to be 0.97 (95% CI: 0.94-0.99), 

0.95 (95% CI: 0.91-0.97), 0.99 (95% CI: 0.96-1.00), 0.96 

(95% CI: 0.93-0.98), 0.97 (95% CI: 0.93-0.99) and 0.98 

respectively. 

 

Figure 3: Wordcloud visualization of financial toxic 

Tweets. 

 

Figure 4: Wordcloud visualization of non-financial 

toxic Tweets. 
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DISCUSSION 

The findings of this study underscore the ability to 

accurately predict financial toxicity from Tweets using a 

Multinomial Naïve Bayes machine learning model. This 

supervised ML methodology demonstrated discriminatory 

abilities across various performance metrics. These 

results suggest potential avenues for leveraging such 

predictions to support financial navigators within 

healthcare systems and cancer centres. This utilization 

could help to alleviate the economic burdens associated 

with cancer treatment or facilitate tailored financial 

assistance for affected patients, particularly for those who 

may express their financial challenges through social 

media but hesitate to discuss them with healthcare 

providers. Moreover, the impact of this study could be 

amplified by patients' willingness to authorize the 

integration of their social interactions with personal EMR 

data. 

With ASCO emphasizing the inclusion of financial 

factors in cancer treatment planning43, health systems and 

cancer centres can adopt proactive social platform 

strategies, leveraging Twitter, such as: (i) Engaging in 

discussions on financial toxicity via hospital/cancer 

centre Twitter accounts and utilizing algorithms like the 

one employed in this study to identify potential 

indications of financial toxicity among cancer patients, or 

their family members. Financial navigators could then 

offer guidance on available resources or encourage direct 

communication for copay assistance and charity 

programs, (ii) Leveraging algorithms, as used in this 

study, to predict financial toxicity from patients' Tweets 

for those who expressly consent to integrate their social 

interactions with personal EMR data. 

Beyond healthcare institutions, the prediction of financial 

toxicity could be integrated into the Twitter channels of 

pharmaceutical manufacturers that post help-seeking 

direct-to-consumer-advertising (DTCA). Predictive 

algorithms like those employed in this study could flag 

patients experiencing financial strain, enabling patient 

assistance program navigators at the manufacturers to 

provide education on eligibility and availability of 

support programs while adhering to privacy, FDA, and 

other governmental regulations. Charitable programs and 

patient advocacy groups could similarly utilize such 

algorithms to identify vulnerable patients, and to extend 

guidance and assistance to such patients. Additionally, 

large Twitter-based communities such as Breast Cancer 

Social Media (#BCSM) could discreetly identify and 

support vulnerable patients by employing similar 

predictive algorithms. 

This study presents several limitations that should be 

acknowledged. Firstly, due to financial and time 

constraints, the data collection process via Twitter was 

limited to a short duration. Future studies with greater 

resources could address this limitation by extending data 

collection over a longer period, possibly spanning several 

months, to substantially increase the volume of Twitter 

data collected. Additionally, synthetic data could be 

utilized to balance the dataset as needed. This approach 

would help mitigate the reliance on a small dataset, which 

can influence model performance. As larger datasets 

become available, alternative machine learning 

classification models and potentially ensemble techniques 

will be utilized in future efforts. Secondly, the generation 

of synthetic Tweets was facilitated by ChatGPT 3.5 and 

the subscription-free version of Claude. To improve the 

authenticity of synthetic data, future efforts will 

incorporate advanced language model versions such as 

ChatGPT-4 and Claude pro. These models can possibly 

better capture the complexity and variability observed in 

real-world Tweets, thereby mitigating potential 

overfitting challenges associated with synthetic data. 

Thirdly, the prompt settings used for the language models 

were limited, and only the first output for synthetic 

Tweets was considered. Exploring alternative prompts 

may yield improved synthetic Tweets in future research 

endeavours.  

CONCLUSION  

In conclusion, this study demonstrates the potential of 

machine learning algorithms, specifically the Multinomial 

Naïve Bayes model, to accurately predict financial 

toxicity in cancer patients based on their Tweets. To the 

author’s knowledge, this represents the first endeavor to 

construct a dataset of Tweets related to financial toxicity 

in cancer patients and subsequently utilize it to effectively 

evaluate a model trained on this dataset. The findings 

underscore the discriminatory capabilities of the model, 

suggesting its utility in supporting financial navigators 

within healthcare systems and cancer centers to alleviate 

the economic burdens associated with cancer treatment 

and facilitate tailored financial assistance for vulnerable 

patients. The integration of social media data into 

healthcare decision-making processes presents 

opportunities for enhancing patient support and 

engagement, ultimately improving patient outcomes and 

the quality of cancer care. 
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