Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20233857

The impact of laboratory automation on efficiency and accuracy in healthcare settings

Loulwah Ahmed Alhammad^{1*}, Turki Khalid Ainosah², Ahmad Mahmoud Ahmad², Mohab Sameh Samarkandi³, Nuha Hamed Jawi³, Majed Abdullah Alharthi⁴, Ashwaq Mohammad Alsharif⁴, Eman Ayed Al Anazi², Samar Abdulaziz Aldugeshem³, Faisal Yahya Johali⁵

Received: 01 December 2023 **Accepted:** 15 December 2023

*Correspondence:

Loulwah Ahmed Alhammad, E-mail: hammadl@ngha.med.sa

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Automated sample processing systems, such as handlers, have played a role in expediting specimen handling, especially during emergencies. Additionally, automated analyzers have contributed to increased testing efficiency by enabling high throughput screening and quicker access to information. This article explores how the use of automated technology in laboratories has greatly improved efficiency and accuracy in healthcare settings. By examining the integration of automated systems for processing samples and conducting tests this review highlights the impact automation has had on outcomes. One notable benefit is reduced turnaround times, streamlined workflows, and enhanced precision in diagnostic testing. The incorporation of laboratory information management systems (LIMS) has further improved efficiency through data integration and real-time monitoring. Accuracy is an aspect of processes, and automated systems meticulously adhere to predefined protocols, resulting in reduced error rates and consistently reliable results. The introduction of intelligence (AI) has enhanced accuracy, particularly in image analysis within the pathology and radiology fields. Effective clinical management of laboratory automation entails technology selection planning for implementation and ongoing monitoring. Interoperability between systems, continuous education on advancements, and efficient workforce management are all crucial components for successful implementation. Despite challenges faced along the way, adopting laboratory automation is essential for optimizing laboratories' workflows while delivering timely information. The review consistently affirms laboratory automation's valid influence in improving efficiency and accuracy within healthcare environments.

Keywords: Laboratory automation, Diagnostic efficiency, Analytical precision, Artificial intelligence in healthcare, Clinical management of automation

INTRODUCTION

Laboratory automation has emerged as a game changer, in healthcare settings completely transforming the way diagnostic tests and analyses are carried out. This review

delves into the impact of laboratory automation on efficiency and accuracy within healthcare environments. The integration of automated technologies has greatly streamlined laboratory processes resulting in turnaround times increased throughput and improved precision in

¹Laboratory Department, National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia

²Laboratory Department, Prince Mohammed bin Abdulaziz Hospital, Medina, Saudi Arabia

³Laboratory Department, King Abdul-Aziz Medical City, Jeddah, Saudi Arabia

⁴Laboratory Department, Eradah Mental Health Complex, Taif, Saudi Arabia

⁵Taif Health Cluster, Taif, Saudi Arabia

testing.² One key area where laboratory automation has proven its effectiveness is sample processing. Traditional manual handling of specimens is time consuming and prone to error.³ However automated systems like sample processors have played a role, in reducing processing times while minimizing the risk of contamination. Another study highlighted how automated sample processing accelerates workflow and ensures accuracy when handling specimens. In addition, laboratory automation has revolutionized the phase of testing in clinical chemistry and hematology.^{4,5}

Automated analyzers can process samples simultaneously enabling high throughput screening and analysis. Research clearly demonstrates that this significantly enhances testing efficiency and reduces the time required for clinicians to receive information.6 Moreover. implementing laboratory information management systems (LIMS) further enhances the efficiency gains achieved through automation. LIMS helps connect laboratory instruments and systems, allowing for the sharing of data and real-time monitoring. One more study emphasizes the role of Laboratory Information Management Systems (LIMS), in optimizing laboratory workflows, resulting in improved efficiency in managing data reporting results and overall operations. From efficiency, the automation of laboratory processes significantly contributes to enhancing accuracy in healthcare environments. When samples and analyses are processed manually, there is a risk of error that can compromise patient outcomes.^{7,8}

On the other hand, automated systems strictly follow predefined protocols with precision. Another study provides insights into how automated testing reduces error rates, highlighting the importance of accuracy in decision-making. The impact of laboratory automation on accuracy is especially noticeable when it comes to routine tasks. Automated systems excel at performing tasks without fatigue or variability. This reliability reduces errors. Ensures that diagnostic results are not affected by inconsistencies introduced during processes. Additionally, the integration of intelligence (AI) into laboratory automation has introduced an era of diagnostic accuracy. AI algorithms can swiftly and precisely analyze datasets, assisting in interpreting test results. 10

The study demonstrates how AI driven image analysis, in pathology and radiology has greatly enhanced accuracy by enabling reliable and timely identification of various medical conditions. Although there are advantages to using laboratory automation in healthcare settings, it is important acknowledge the challenges and approach implementation strategies with caution. 11 One of the obstacles, for healthcare institutions is the financial investment needed for automation technology as studies have shown. However, the long-term benefits, in terms of improved efficiency, accuracy, and cost savings, present an argument for implementing automated solutions. Therefore, extensive research consistently supports the notion that incorporating laboratory automation significantly enhances both efficiency and accuracy within healthcare environments.

From streamlining sample processing to enabling throughput capabilities and incorporating cutting-edge technologies like AI automation has become a fundamental aspect of modern diagnostic practices. 12 As healthcare institutions strive to prioritize care and outcomes, embracing laboratory automation emerges as an approach to optimizing laboratory workflows and ensuring the delivery of precise and timely diagnostic information. 13 The objective of this study is to examine the impact of laboratory automation on efficiency and accuracy within healthcare settings.

METHODS

On 26 November 2023, I conducted a review of articles sourced from Cochrane Library, Pubmed, and Scopus. This review focused on investigating how laboratory automation influences efficiency and accuracy within healthcare environments. Specifically, I analyzed studies conducted in English since 2008 that prioritize the implementation of laboratory automation in healthcare. The main objective was to shed light on assessment methods and early warning systems for healthcare professionals who adopt laboratory automation with the intention of enhancing efficiency and accuracy in healthcare settings.

DISCUSSION

The use of laboratory automation in healthcare settings has brought about a period of great impact on the efficiency and accuracy of processes. Automated technologies have simplified laboratory workflows, especially when it comes to sample processing and analytical testing. Numerous studies have consistently shown the efficiency gains achieved through automated sample processing systems like handlers, resulting in turnaround times and a lower risk of contamination. This speedy sample handling is crucial in emergency situations, highlighting the real-world importance of automation in ensuring diagnoses. In this phase, automated analyzers contribute to increased efficiency by processing large volumes of samples, enabling high throughput screening.

The direct link between automation, testing efficiency, and reduced time for clinicians to access information emphasizes the tangible benefits of these technological advancements. Furthermore, incorporating laboratory information management systems (LIMS) further enhances these efficiency gains by facilitating data integration and real-time monitoring. Accuracy plays a role in processes and is significantly improved through laboratory automation. Automated systems that adhere to established protocols help mitigate human errors associated with manual sample processing and analysis. This is especially crucial in tasks where consistency is key, reducing error rates and ensuring reliable diagnostic

results. The integration of intelligence (AI) enhances the precision of diagnoses as AI-powered image analysis has been shown to improve accuracy in pathology and radiology. While there are costs involved in implementing automation, the long-term benefits and potential cost savings provide an argument for its adoption.

Clinical manifestation

The use of automation technology, in healthcare settings has brought about improvements in care, diagnostic accuracy and overall clinical outcomes. Integrating automated systems into aspects of practice has resulted in increased efficiency and faster turnaround times for diagnostic tests. ^{15,16} In the past manually processing samples was a time consuming process that could cause delays in delivering information. However, with the introduction of automated sample processing systems like handlers, laboratories can now.

Prepare specimens more quickly. This improved efficiency is particularly crucial in emergency situations where prompt diagnosis vital. Recent studies have confirmed that implementing automated sample processing significantly reduce the time needed to generate results. Additionally, laboratory automation has also enhanced efficiency during the phase of testing by using automated analyzers that can process a volume of samples simultaneously, offering high throughput screening capabilities. 17,18 This enhanced productivity leads to efficiency in settings allowing healthcare providers to access a larger amount of diagnostic information within a reduced time period. Another study highlights the importance of this efficiency improvement, in settings emphasizing its contribution to decision-making processes ultimately leading to faster interventions and treatments.

In terms of accuracy, laboratory automation stands out as a defense against the risks associated with errors in the diagnostic process. Manual handling of samples and analysis execution are prone to variability and mistakes, which can have implications ranging from misdiagnoses to inappropriate treatments. By adhering to predefined protocols and executing tasks meticulously laboratory automation greatly reduces the chances of error. The research provides an example by demonstrating a decrease in error rates associated with automated testing. This error reduction is highly relevant from a perspective that underscores the importance of accurate test results for making appropriate clinical decisions. Automations impact is particularly evident when it comes to routine tasks within the laboratory. These tasks are inherently susceptible to error, making automation incredibly transformative in this aspect. Automated systems excel at executing these tasks without succumbing to fatigueinduced lapses in attention. This reliability is crucial, for ensuring results, which form the foundation of clinical decision making. This clinical manifestation provides insights that show how automation can effectively decrease errors, in clinical testing. 19 As a result, clinicians can have confidence, in the accuracy of results obtained through automated processes, which significantly contributes to improving patient care.

Furthermore, the integration of intelligence (AI), into laboratory automation brings a dimension to clinical manifestations. AI algorithms seamlessly incorporated into automated systems possess an ability to analyze datasets at a speed and precision that exceeds human capabilities. For example, in pathology and radiology, AI-powered image analysis has emerged as a tool for enhancing diagnostic accuracy.^{20,21} A recent study emphasizes the significance of this development by highlighting how AI contributes to reliable and timely identification of various medical conditions, thereby directly impacting patient outcomes in a positive way. Additionally, the implementation of laboratory automation in healthcare settings is marked by tangible improvements in efficiency and accuracy throughout the process. From sample processing to the high throughput capabilities of automated analyzers, these clinical benefits are evident through turnaround times and expedited decision making. The reduction in errors in routine tasks enhances the reliability of diagnostic results and instills greater confidence among clinicians. With AI integration, laboratory automation reaches heights by offering capabilities that significantly impact patient care and outcomes. With the progress of healthcare, the integration of technology has become crucial. Laboratory automation, in particular, is an example of how it's transforming diagnostics and patient care, showcasing its significance in shaping the future.

Management

Managing laboratory automation effectively in healthcare settings is a task that focuses on optimizing efficiency and accuracy, in processes. To begin it's essential to assess the needs of the laboratory considering factors like test volume and analysis requirements. Engaging stakeholders such as laboratory directors, clinicians and IT specialists is crucial for understanding the organizations requirements and gaining support for automation initiatives.

When it comes to management selecting the right automation technologies aligns closely with objectives. The clinical management team conducts cost benefit analyses taking into account capital investment ongoing maintenance costs and potential impact on turnaround times. The aim is to choose automation solutions that not meet the institutions needs but also provide a favorable return on investment through improved efficiency and diagnostic accuracy. Implementing laboratory automation requires planning and coordination to minimize disruptions to operations. The clinical management team plays a role in developing implementation schedules that consider peak testing times while avoiding interference, with ongoing diagnostic processes. It is crucial to supervise training programs, for laboratory personnel making sure they are adequately prepared to operate and resolve issues, with automated systems efficiently.

Effective communication channels are put in place to promptly address any concerns that may arise during the implementation phase creating an environment that promotes collaboration and problem solving. Once implemented the clinical management of laboratory automation extends to monitoring, performance assessments and quality control measures.²² These aspects are crucial to ensure that the technology consistently meets and surpasses established standards.

Regular evaluations of automated systems, conducted by the clinical management team in cooperation, with laboratory staff and IT specialists identify areas for improvement. Contribute to refining automated workflows. Stringent quality control protocols validate the accuracy and reliability of automated test results ensuring the integrity of outcomes. In terms of management interoperability plays a role in maximizing the benefits of laboratory automation. It is essential to integrate with existing laboratory information management systems (LIMS) and electronic health records (EHR). The clinical management team collaborates closely with IT specialists to address interoperability challenges enabling data exchange between automated systems and other components within the healthcare ecosystem. This integration enhances efficiency in workflows by providing real time data access streamlined reporting processes and a more interconnected healthcare infrastructure. Moreover managing laboratory automation requires a commitment, to keeping up with advancements.

Clinical management teams need to participate in education and training programs to understand new technologies stay updated on advancements and integrate best practices, in laboratory automation. This commitment ensures that healthcare institutions stay at the forefront of innovation making the most of automation to meet evolving demands and keep up with the paced technological advancements. Managing the workforce is also crucial, in implementing laboratory automation. Introducing automated systems may require adjustments to the roles and responsibilities of lab staff.

In this regard clinical management plays a role in facilitating a transition. This includes providing training opportunities for employees clearly defining roles and emphasizing the ongoing importance of staff expertise in overseeing and validating automated processes. Efficient workforce management ensures that employees not feel comfortable but also empowered to utilize automation for efficiency while maintaining a strong focus on high quality and accurate diagnostic outcomes. Alongside workforce management integrating clinical decision support systems (CDSS) with laboratory automation adds another layer of responsibility for management teams. CDSS, powered by algorithms helps clinicians interpret diagnostic data thereby enhancing overall diagnostic accuracy.

The clinical management team works closely with IT specialists to implement and optimize CDSS ensuring

alignment, with guidelines and improving decision making processes for healthcare professionals. In summary effectively managing laboratory automation is an ever changing process that involves planning, implementation, continuous monitoring and workforce management. Efficient clinical management is crucial, in ensuring that automation technologies are well suited to the needs of healthcare institutions and contribute significantly to improved efficiency and accuracy in procedures. As the field of healthcare continues to evolve clinical management teams have a proactive role, in navigating the intricacies of laboratory automation. Through their efforts these teams utilize technology to enhance care and drive advancements in overall clinical outcomes. This highlights the importance of clinical management when integrating laboratory automation successfully into healthcare environments.

CONCLUSION

In summary the review highlights the impact of laboratory automation, on improving efficiency and accuracy in healthcare settings. The incorporation of automated technologies ranging from sample processing to testing has completely transformed workflows. The practical benefits of laboratory automation are evident in turnaround times increased capacity and improved precision in tests. Notably automation acts as a safeguard against errors ensuring reliable results. Managing laboratory automation is an effort that involves selecting appropriate technologies meticulously planning their implementation continuously monitoring adherence to clinical standards. Key factors for management include interoperability staying updated on advancements through continuous education and effectively managing the workforce. Despite the challenges involved adopting laboratory automation is considered vital for optimizing laboratory processes and delivering timely information. As healthcare institutions prioritize care and outcomes it becomes increasingly clear that laboratory automation plays a role, in achieving these goals.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- Archetti C, Montanelli A, Finazzi D, Caimi L, Garrafa E. Clinical Laboratory Automation: A Case Study. J Public Health Res. 2017;6(1):881.
- 2. Landaverde L, McIntyre D, Robson J, Fu D, Ortiz L, Chen R, et al. Buildout and integration of an automated high-throughput CLIA laboratory for SARS-CoV-2 testing on a large urban campus. SLAS Technol. 2022;27(5):302-11.
- 3. Armbruster DA, Overcash DR, Reyes J. Clinical Chemistry Laboratory Automation in the 21st Century Amat Victoria curam (Victory loves careful preparation). Clin Biochem Rev. 2014;35(3):143-53.

- Ledeboer NA, Dallas SD. The automated clinical microbiology laboratory: fact or fantasy? J Clin Microbiol. 2014;52(9):3140-6.
- 5. Yarbrough ML, Lainhart W, McMullen AR, Anderson NW, Burnham CD. Impact of total laboratory automation on workflow and specimen processing time for culture of urine specimens. Eur J Clin Microbiol Infect Dis. 2018;37(12):2405-11.
- 6. Liang Y, Pan J, Fang Q. Research advances of highthroughput cell-based drug screening systems based on microfluidic technique. Se Pu. 2021;39(6):567-77.
- 7. Holland I, Davies JA. Automation in the Life Science Research Laboratory. Front Bioeng Biotechnol. 2020;8:571777.
- 8. Mrazek C, Lippi G, Keppel MH, Felder TK, Oberkofler H, Haschke-Becher E, et al. Errors within the total laboratory testing process, from test selection to medical decision-making A review of causes, consequences, surveillance and solutions. Biochem Med (Zagreb). 2020;30(2):020502.
- Naam YA, Elsafi S, Al Jahdali MH, Al Shaman RS, Al-Qurouni BH, Al Zahrani EM. The Impact of Total Automaton on the Clinical Laboratory Workforce: A Case Study. J Healthc Leadersh. 2022;14:55-62.
- Antari MA. Artificial Intelligence for Medical Diagnostics-Existing and Future AI Technology! Diagnostics (Basel). 2023;13(4):688.
- 11. Socea JN, Stone VN, Qian X, Gibbs PL, Levinson KJ. Implementing laboratory automation for next-generation sequencing: benefits and challenges for library preparation. Front Public Health. 2023;11:1195581.
- 12. Haleem A, Javaid M, Singh RP, Suman R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sens Int. 2021;2:100117.
- 13. Stoumpos AI, Kitsios F, Talias MA. Digital Transformation in Healthcare: Technology Acceptance and Its Applications. Int J Environ Res Public Health. 2023;20(4):3407.
- Doern GV, Carroll KC, Diekema DJ, Garey KW, Rupp ME, Weinstein MP, et al. Practical Guidance

- for Clinical Microbiology Laboratories: A Comprehensive Update on the Problem of Blood Culture Contamination and a Discussion of Methods for Addressing the Problem. Clin Microbiol Rev. 2019;33(1):e00009-19.
- 15. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689.
- 16. Alotaibi YK, Federico F. The impact of health information technology on patient safety. Saudi Med J. 2017;38(12):1173-80.
- 17. Tacker DH, Topardo J, Mahaffey C, Perrotta PL. Workflow analysis comparing manual and automated specimen processing for mass spectrometry-based vitamin D testing. Lab Med. 2014;45(4):361-7.
- Dauwalder O, Landrieve L, Laurent F, Montclos M, Vandenesch F, Lina G. Does bacteriology laboratory automation reduce time to results and increase quality management? Clin Microbiol Infect. 2016;22(3):236-43
- Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3:17.
- Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med. 2020;3:17.
- 21. Shafi S, Parwani AV. Artificial intelligence in diagnostic pathology. Diagn Pathol. 2023;18(1):109.
- 22. Yeo CP, Ng WY. Automation and productivity in the clinical laboratory: experience of a tertiary healthcare facility. Singapore Med J. 2018;59(11):597-601.

Cite this article as: Alhammad LA, Ainosah TK, Ahmad AM, Samarkandi MS, Jawi NH, Alharthi MA, et al. The impact of laboratory automation on efficiency and accuracy in healthcare settings. Int J Community Med Public Health 2024;11:459-63.