

Review Article

DOI: <https://dx.doi.org/10.18203/2394-6040.ijcmph20233854>

The use of biomarkers in the diagnosis and management of emergency medical conditions

**Ahmed Amin Aljefri^{1*}, Mazen Saud Alharthi², Farhan Mufarreh Almadari³,
Hassan Abdualmohsin Alazwari⁴, Zafer Ali Alshahrani⁵, Abdullah Abdulelah Alanazi⁶,
Afnan Qasem ALgadani⁷, Ahmed Ali Aljawad⁸, Faris Mohammed Qattan²,
Abdulrahman Hassan Shuraym⁹, Aisha Nour Almutary¹⁰**

¹Department of Emergency Medicine, Al Thager Hospital, Jeddah, Saudi Arabia

²College of Medicine, Taif University, Taif, Saudi Arabia

³Department of Otolaryngology, Khamis Mushait Maternity and Children Hospital, Khamis Mushait, Saudi Arabia

⁴Department of General Surgery, King Faisal Hospital, Mecca, Saudi Arabia

⁵Department of Emergency Medicine, Armed Forces Hospital Southern Region, Khamis Mushait, Saudi Arabia

⁶Department of Emergency Medicine, Al Iman General Hospital, Riyadh, Saudi Arabia

⁷My Modern Clinic, Sibt Al Alaya, Saudi Arabia

⁸College of Medicine, Medical University of Warsaw, Warsaw, Poland

⁹College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia

¹⁰College of Medicine, Almaarefa University, Riyadh, Saudi Arabia

Received: 30 November 2023

Accepted: 13 December 2023

***Correspondence:**

Dr. Ahmed Amin Aljefri,

E-mail: Ahmad.jefri2011@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The use of biomarkers in emergency situations represents a change in modern healthcare. This review examines their impact in emergencies focusing on how they improve the accuracy of diagnoses, provide insights into prognosis and aid in treatment decisions. Notably troponins (I and T) are effective in diagnosing myocardial infarction enabling targeted interventions and risk assessment for cardiovascular emergencies. In cases of sepsis procalcitonin helps distinguish infections and influences decisions about therapy, which is crucial for global efforts against resistance. S100B, a biomarker used in emergencies assists in prioritizing cases of brain injury. To prevent harm, serum markers like creatinine and cystatin C guide interventions for hepatic emergencies. For trauma and hematological emergencies D dimer and lactate provide prognostic information. Ongoing research is exploring biomarkers well as the integration of artificial intelligence offering promising advancements for the future. The clinical significance of biomarkers highlights a commitment to approaches that contribute to the ever-evolving field of emergency medicine and ultimately enhance patient care.

Keywords: Biomarkers, Emergency medicine, Cardiovascular emergencies, Procalcitonin, Artificial intelligence

INTRODUCTION

In emergency situations it is crucial to diagnose and manage conditions quickly and accurately in order to improve outcomes. Biomarkers, which are indicators of biological processes, disease processes or responses, to medications, have become increasingly important in recent

years for diagnosing and managing various emergency medical conditions.¹ This review explores the importance of biomarkers in emergency medicine highlighting their usefulness in diagnosing and guiding treatment decisions. Specifically, when it comes to emergencies, biomarkers play a role in ensuring timely diagnosis and effective management. Cardiac troponins, troponin I and T, play a

role, in evaluating damage to the heart muscle helping doctors quickly identify acute myocardial infarction (AMI).^{2,3} Furthermore, brain natriuretic peptide (BNP) and N B type natriuretic peptide (NT pro-BNP) effectively detect heart failure and guide treatment decisions when someone experiences sudden difficulty in breathing.^{4,5} Biomarkers are incredibly useful for diagnosing and managing sepsis. Procalcitonin (PCT) is a biomarker that assists in differentiating infections from non-infective inflammatory conditions, which helps doctors make informed decisions regarding initiating or discontinuing antibiotic therapy.^{6,7}

C reactive protein (CRP) is another used biomarker that helps assess inflammation and infection levels enabling identification of patients at risk of severe sepsis or septic shock. In cases of emergencies biomarkers play a role in early diagnosis and prognosis determination. S100B, a protein that binds calcium shows promise as a biomarker for brain injury.^{8,9} Higher levels of S100B in the bloodstream correlate with the severity of brain injury. Help clinicians prioritize patients, for imaging or neurosurgical intervention.^{10,11} In emergency medicine doctors use biomarkers, like serum creatinine and cystatin C to assess function. When these biomarkers show levels it indicates acute kidney injury (AKI), and doctors can use this information to guide their interventions and prevent damage to the kidneys.^{12,13}

Similarly, in cases of acute liver injury, biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are helpful in diagnosing and monitoring dysfunction promptly allowing for intervention. Biomarkers play a role in predicting outcomes and guiding treatment decisions in cases of trauma. D dimer, which is a product of fibrin degradation, is widely used to diagnose thromboembolism. In trauma patients, elevated levels of D dimer may indicate the presence of disseminated coagulation (DIC) or other clotting disorders, which can influence the choice of therapies. Lactate levels are also valuable for assessing tissue perfusion and identifying patients who're at risk of developing sepsis or multiple organ dysfunction syndrome.^{14,15} While biomarkers show promise in emergency medicine, there are still challenges concerning the standardization of assays, interpretation of results and cost-effectiveness. Ongoing research is exploring biomarkers such as microRNA and metabolomics profiling to improve accuracy further.

The integration of intelligence and machine learning in analyzing biomarkers holds the potential for enhancing precision and personalized treatment approaches during emergency situations. As a result, biomarkers have become tools for diagnosing and managing emergency conditions across various specialties. Whether its emergencies, trauma cases or sepsis management, biomarkers assist healthcare professionals in making well-informed decisions that ultimately lead to better patient outcomes. The evolving field of biomarker research in emergency

medicine reflects a dedication to advancing patient care through diagnostic methods. This study aims to review the utilization of biomarkers in diagnosing and managing emergency conditions.

METHODS

In this evaluation, which took place on 26 November 2023, we carefully assess articles from Cochrane Library, Pubmed and Scopus. Our focus is on the use of biomarkers in diagnosing and managing emergency conditions. Specifically, we examine studies conducted in English since 2008 that emphasize the application of biomarkers in emergency medicine. Our goal is to offer healthcare professionals insights into assessment methods and early warning systems, for utilizing biomarkers in emergency situations.

DISCUSSION

The incorporation of biomarkers into the diagnosis and treatment of emergency conditions is an advancement in modern emergency medicine. The practical use of biomarkers highlights their role in improving precision, prognostic insight and treatment decision making across various emergency situations. In emergencies biomarkers such as troponin I and T help quickly and accurately diagnose myocardial infarction leading to timely interventions and risk assessment. Similarly, in cases of sudden difficulty breathing, biomarkers like BNP and NT proBNP guide interventions to heart failure, enhancing symptom management.^{16,17}

Biomarkers like PCT exemplify their impact in sepsis by helping bacterial infections guiding decisions on antibiotic therapy and contributing to global efforts against antibiotic resistance. Neurological emergencies benefit from biomarkers such as S100B by aiding triage decisions and determining the need for intervention. Renal and hepatic emergencies also demonstrate the clinical significance of biomarkers in directing interventions and monitoring organ function. Trauma and hematological emergencies witness improved management through the use of biomarkers like D dimer and lactate which influence strategies for better patient outcomes. Despite the role of biomarkers, challenges still need to be addressed regarding standardization and result interpretation. Ongoing research focuses on exploring biomarkers while integrating intelligence to enhance diagnostic accuracy further. The way biomarkers present, in cases, demonstrates a dedication to improving patient care by using methods which add to the ever-changing field of emergency medicine.

Clinical manifestation

The integration of biomarkers into the management framework of emergency conditions represents a significant shift in contemporary emergency medicine. Biomarkers, which are indicators of abnormal biological

processes have transformed how healthcare professionals approach identifying assessing and treating patients in urgent medical situations.^{18,19} The practical application of biomarkers across emergency scenarios highlights their role in improving diagnostic accuracy providing prognostic insights and aiding treatment decision making. In emergencies, biomarkers play an important role in swiftly and accurately diagnosing acute myocardial infarction (AMI).

Cardiac troponins, namely troponin I and troponin T serve as biomarkers for assessing heart muscle damage. When evaluating a patient with chest pain measuring troponin levels significantly enhances the presentation by confirming or ruling out AMI. This expedites the initiation of treatments, like antiplatelet therapy and revascularization procedures while assisting in risk stratification and prognosis determination to optimize patient outcomes. Similarly, when dealing with cases involving difficulty breathing (acute dyspnea) brain natriuretic peptide (BNP) and N Terminal B type natriuretic peptide (NT pro-BNP) play vital roles as biomarkers.^{20,21} Detecting levels of these biomarkers provides information for healthcare professionals to distinguish between cardiac and non-cardiac causes of difficulty in breathing helping them diagnose heart failure accurately. This allows for the initiation of interventions to heart failure, such as diuretic therapy, which improves symptom management and overall patient outcomes.

In cases of sepsis and inflammatory conditions the use of biomarkers helps clinicians differentiate between infections and non-infectious inflammatory states. Procalcitonin (PCT) emerges as a biomarker with elevated levels indicating bacterial involvement. Armed with this information, clinicians can make decisions about starting or stopping therapy thus avoiding unnecessary exposure to antibiotics and contributing to the global fight against antibiotic resistance. Additionally, in emergencies like brain injury (TBI) S100B- an important calcium binding protein-serves as a measurable biomarker that reflects the severity of brain injury. By assessing levels clinicians can prioritize patients for imaging or potential neurosurgical intervention. This utilization of biomarkers enhances the accuracy and efficiency of decision making in situations enabling a targeted and personalized approach to patient care.

The clinical manifestation of biomarkers also plays a role in hepatic emergencies, within emergency medicine. Serum creatinine and cystatin C are markers for acute kidney injury (AKI). When their levels rise clinicians take action to prevent harm to the kidneys. In cases of acute liver injury biomarkers like alanine aminotransferase (ALT) and aspartate aminotransferase play a role in diagnosing and monitoring dysfunction. These biomarkers help guide interventions to minimize damage. Trauma and emergencies related to blood disorders present another aspect of how biomarkers are used in practice. D dimer, a

factor in diagnosing thromboembolism helps identify clotting abnormalities in trauma patients.

If D dimer levels are elevated it suggests the presence of disseminated coagulation (DIC) or other clotting problems, which can affect treatment strategies to prevent complications. Additionally, lactate levels in trauma patients provide insights into tissue perfusion. Help identify those at risk of developing sepsis or multiple organ dysfunction syndrome. When lactate levels are high healthcare professionals take action to improve tissue oxygenation and reduce the risk of complications. Therefore, the practical use of biomarkers for diagnosing and managing emergency conditions is a part of modern emergency medicine. From emergencies to sepsis injuries and organ dysfunction biomarkers offer tangible clinical information that greatly influences decision making, treatment approaches and overall patient outcomes. Incorporating biomarkers into practice represents a shift towards precision medicine- an approach that relies on timely and accurate information obtained from biomarker analysis to enhance healthcare provider's ability to deliver optimal care during emergencies. This evolving paradigm demonstrates a commitment to advancing patient care through methods and emphasizes the crucial role that biomarkers play in shaping the future of emergency medicine.

Management

The incorporation of biomarkers into the diagnosis and treatment of conditions is a crucial aspect of modern clinical practices. It allows healthcare professionals to have tools for intervention and better patient outcomes. Biomarkers play a role in guiding decisions, assessing risks and developing personalized treatment plans across various urgent medical situations. For emergencies like myocardial infarction (AMI) biomarkers such as troponin I and troponin T have a significant impact on clinical management. These biomarkers do not help diagnose AMI accurately but also prompt clinicians to initiate targeted treatments.

When troponin levels rise, interventions like antiplatelet therapy and revascularization procedures are implemented to improve management strategies.²² Additionally, troponin levels assist in risk assessment enabling healthcare providers to customize interventions based on the severity of heart muscle damage and the likelihood of complications. In cases where acute dyspnea is a concern, especially if heart failure is suspected, the integration of biomarkers like brain peptide (BNP) and N terminal pro B type natriuretic peptide (NT proBNP) plays a vital role in clinical management. Higher levels of these biomarkers can be used as indicators allowing doctors to quickly start interventions for heart failure like diuretic treatment. The use of biomarkers has greatly improved the way we manage symptoms and patient outcomes, showing just how important they are in making decisions. For instance, when it comes to sepsis and inflammatory conditions

integrating procalcitonin (PCT) as a biomarker has brought about a shift in how we manage these cases. PCT is incredibly helpful in distinguishing between infections and non-infectious inflammatory states, giving clinician's information to make better decisions about antibiotic therapy. This approach does not minimize unnecessary exposure to antibiotics but also plays a role in global efforts to fight antibiotic resistance highlighting the broader impact of using biomarkers in public health.

In the case of emergencies like brain injury (TBI) using S100B as a biomarker has revolutionized clinical management. Elevated levels of S100B indicate the severity of brain injury helping doctors prioritize patients for imaging or potential neurosurgical intervention. This biomarker-driven strategy improves decision-making efficiency in time situations emphasizing how biomarkers can shape interventions tailored specifically to each patient's needs. When it comes to hepatic emergencies biomarkers such as serum creatinine, cystatin C, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) play a role in guiding clinical management. Biomarkers play a role in cases of acute kidney injury (AKI) by helping healthcare professionals take actions to avoid additional harm to the kidneys. By using biomarker data timely interventions can be implemented, leading to management and potentially improving the overall condition of the kidneys. Similarly, biomarkers that are linked to acute liver injury play a role in the diagnosis and monitoring of hepatic dysfunction. They guide healthcare professionals in taking measures to minimize damage and optimize clinical management strategies. In the case of trauma and hematological emergencies, the use of biomarkers, such as D dimer brings about a transformation in management.

D dimer serves as a tool in diagnosing thromboembolism by identifying clotting disorders in trauma patients. When D dimer levels are elevated, it indicates the presence of disseminated coagulation (DIC) or other clotting abnormalities. This information influences strategies aimed at preventing complications. Additionally, lactate levels can provide insights into tissue perfusion among trauma patients, helping identify those who are at risk of developing sepsis or multiple organ dysfunction syndrome. The clinical management strategy is shaped by these lactate levels prompting clinicians to initiate interventions that aim to improve tissue oxygenation and mitigate the progression to severe complications.

In conclusion the strategic use of biomarkers in diagnosing and managing emergency conditions represents a shift in clinical practices. Whether its emergencies, sepsis cases, injuries or organ dysfunction scenarios biomarkers act as guiding tools, for healthcare professionals to make informed decisions and implement personalized interventions. The incorporation of biomarkers in emergency healthcare marks a chapter in precision medicine. By utilizing precise data obtained from biomarker analysis medical professionals are empowered

to provide care. This revolutionary approach enhances accuracy, and risk evaluation and aids in creating treatment strategies. Consequently, it leads to outcomes for patients dealing with medical conditions.

CONCLUSION

In summary the strategic application of biomarkers in emergency medicine plays a role in clinical practices significantly impacting the accuracy of diagnoses and treatment strategies. Whether its emergencies, trauma cases or sepsis situations biomarkers prove to be tools that guide clinicians towards making quick and well-informed decisions. The practical implications of using biomarkers highlight their transformative function in improving outcomes by enabling interventions and personalized treatment plans. The evolving landscape of biomarker research within emergency medicine signifies a dedication to innovation as ongoing efforts address challenges and explore avenues for improvement. As biomarkers continue to shape the future of emergency medicine their integration into practice marks the beginning of an era in precision medicine where data driven insights contribute to optimal care for urgent medical conditions. The dynamic nature of utilizing biomarkers underscores a commitment to advancing patient care through approaches paving the way for a more nuanced and effective management approach, for emergency medical situations.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. *Heliyon.* 2023;9(2):e13323.
2. Christenson E, Christenson RH. The role of cardiac biomarkers in the diagnosis and management of patients presenting with suspected acute coronary syndrome. *Ann Lab Med.* 2013;33(5):309-18.
3. Aspromonte N, Zaninotto M, Aimo A, Fumarulo I, Plebani M, Clerico A. Measurement of Cardiac-Specific Biomarkers in the Emergency Department: New Insight in Risk Evaluation. *Int J Mol Sci.* 2023;24(21):15998.
4. Ontario Health (Quality). Use of B-Type Natriuretic Peptide (BNP) and N-Terminal proBNP (NT-proBNP) as Diagnostic Tests in Adults With Suspected Heart Failure: A Health Technology Assessment. *Ont Health Technol Assess Ser.* 2021;21(2):1-125.
5. Palazzuoli A, Gallotta M, Quatrini I, Nuti R. Natriuretic peptides (BNP and NT-proBNP): measurement and relevance in heart failure. *Vasc Health Risk Manag.* 2010;6:411-8.
6. Samuel MS, Latha R, Kavitha K, Sivasubramanian V. A study on biomarkers of sepsis and potential role

of procalcitonin and ferritin marker in diagnosis, prognosis and treatment. *J Family Med Prim Care.* 2022;11(6):2608-12.

7. Creamer AW, Kent AE, Albur M. Procalcitonin in respiratory disease: use as a biomarker for diagnosis and guiding antibiotic therapy. *Breathe (Sheff).* 2019;15(4):296-304.
8. Oris C, Kahouadji S, Durif J, Bouvier D, Sapin V. S100B, Actor and Biomarker of Mild Traumatic Brain Injury. *Int J Mol Sci.* 2023;24(7):6602.
9. Goyal A, Failla MD, Niyonkuru C, Amin K, Fabio A, Berger RP, Wagner AK. S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury. *J Neurotrauma.* 2013;30(11):946-57.
10. Calcagnile O, Undén L, Undén J. Clinical validation of S100B use in management of mild head injury. *BMC Emerg Med.* 2012;12:13.
11. Gunawan PI, Saharso D, Sari DP. Correlation of serum S100B levels with brain magnetic resonance imaging abnormalities in children with status epilepticus. *Korean J Pediatr.* 2019;62(7):281-5.
12. Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. *Annu Rev Pharmacol Toxicol.* 2008;48:463-93.
13. Brazzelli M, Aucott L, Aceves-Martins M, Robertson C, Jacobsen E, Imamura M, et al. Biomarkers for assessing acute kidney injury for people who are being considered for admission to critical care: a systematic review and cost-effectiveness analysis. *Health Technol Assess.* 2022;26(7):1-286.
14. Bolvardi E, Malmir J, Reihani H, Hashemian AM, Bahramian M, Khademhosseini P, et al. The role of lactate clearance as a predictor of organ dysfunction and mortality in patients with severe sepsis. *Mater Sociomed.* 2016;28(1):57-60.
15. Lee SM, An WS. New clinical criteria for septic shock: serum lactate level as new emerging vital sign. *J Thorac Dis.* 2016;8(7):1388-90.
16. Stokes NR, Dietz BW, Liang JJ. Cardiopulmonary laboratory biomarkers in the evaluation of acute dyspnea. *Open Access Emerg Med.* 2016;8:35-45.
17. Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. The Biomarkers for Acute Myocardial Infarction and Heart Failure. *Biomed Res Int.* 2020;2020:2018035.
18. Frangogiannis NG. Biomarkers: hopes and challenges in the path from discovery to clinical practice. *Transl Res.* 2012;159(4):197-204.
19. Anoop TC. Biomarkers of Diseases: Their Role in Emergency Medicine. In: Nagehan Ersoy T, eds. *Neurodegenerative Diseases.* Rijeka: IntechOpen; 2020.
20. Nayer J, Aggarwal P, Galwankar S. Utility of point-of-care testing of natriuretic peptides (brain natriuretic peptide and n-terminal pro-brain natriuretic peptide) in the emergency department. *Int J Crit Illn Inj Sci.* 2014;4(3):209-15.
21. Sweeney C, Ryan F, Ledwidge M, Ryan C, McDonald K, Watson C, et al. Natriuretic peptide-guided treatment for the prevention of cardiovascular events in patients without heart failure. *Cochrane Database Syst Rev.* 2019;10(10):CD013015.
22. Hajar R. Evolution of Myocardial Infarction and its Biomarkers: A Historical Perspective. *Heart Views.* 2016;17(4):167-72.

Cite this article as: Aljefri AA, Alharthi MS, Almadari FM, Alazwari HA, Alshahrani ZA, Alanazi AA, et al. The use of biomarkers in the diagnosis and management of emergency medical conditions. *Int J Community Med Public Health* 2024;11:521-5.