

Review Article

DOI: <https://dx.doi.org/10.18203/2394-6040.ijcmph20233848>

Advancements in laboratory techniques for early cancer detection and monitoring

**Heba Mustafa Shaheen^{1*}, Abdulrahman Jaber Harbi², Abdullah Mohsen Khormi²,
Reda Salah Abuzaid¹, Abdullah Muneer Alshahrani³, Mansoor Musa Geteni²,
Nossiba Hussain Arkoubi¹, Abdulrahman Mohammed Al Suyan⁴, Majidah Bakr Banaemah¹,
Essa Hasan Alqahtani⁵**

¹Laboratory Department, King Fahad General Hospital, Jeddah, Saudi Arabia

²Laboratory Department, Prince Mohammed bin Nasser Hospital, Jazan, Saudi Arabia

³Blood Bank Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia

⁴Oncology and Hematology Department, King Saud Medical City, Riyadh, Saudi Arabia

⁵Laboratory Department, King Faisal Medical City for the Southern Region, Abha, Saudi Arabia

Received: 30 November 2023

Accepted: 13 December 2023

***Correspondence:**

Dr. Heba Mustafa Shaheen,

E-mail: hoby2k50@hotmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In years, there have been advancements in laboratory methods for detecting and monitoring cancer at its earliest stages. These breakthroughs have revolutionized the field of cancer care with a focus on treatment strategies. This review explores a range of laboratory-based approaches, including biopsies, advanced imaging technologies like PET, MRI, and CT scans, genomic profiling techniques such as next-generation sequencing, novel biomarkers, innovative assay platforms, and the use of artificial intelligence-driven analytics. Liquid biopsies are particularly valuable as they provide real-time insights into tumor dynamics and responses to treatment by analyzing circulating tumor cells and cell-free DNA. Advanced imaging modalities offer enhanced sensitivity and resolution for the detection and monitoring of tumors. Genomic profiling techniques help unravel the complexities of tumors to guide therapies. Novel biomarkers show promise in types of cancer by aiding in screening, prognosis determination, and treatment monitoring. Innovative assay platforms allow for the analysis of biomarkers to improve diagnosis. The integration of intelligence (AI) and machine learning has been instrumental in interpreting clinical and molecular data alongside traditional laboratory techniques. However, despite progress made, challenges related to standardization, cost effectiveness, and ethical considerations persist. It is crucial to integrate these techniques into clinical practice to fully exploit their potential in enhancing cancer care.

Keywords: Early cancer detection, Liquid biopsies, Advanced imaging, Genomic profiling, Personalized medicine

INTRODUCTION

The fight against cancer continues to be a health challenge, but there has been a positive increase in laboratory techniques focused on early detection and monitoring in recent years.¹ These advancements do not aim to detect cancer. Do so in its earliest stages with improved accuracy, sensitivity, and specificity. This precision allows for interventions at the time leading to personalized treatment

strategies tailored specifically for each patient. The range of laboratory-based methods available covers a spectrum, including biomarkers, state-of-the-art imaging technologies, liquid biopsies, and genomic profiling techniques. Liquid biopsies are particularly promising in the field of invasive cancer detection and monitoring.² They involve analyzing circulating tumor cells, cell-free DNA (cfDNA), exosomes, and other biomolecules found in fluids like blood, urine, and cerebrospinal fluid. This

approach provides real-time insight into tracking tumor development, monitoring treatment responses, and identifying the emergence of drug resistance.³ Additionally, the integration of throughput technologies has revolutionized cancer diagnostics. Generation sequencing (NGS) offers an understanding of tumor genomes by identifying driver mutations or genetic alterations along with molecular signatures associated with cancer progression.⁴⁻⁶

The combination of biopsy and NGS (Next Generation Sequencing) helps identify residual disease, which is important for making treatment decisions and detecting recurrence at an early stage. At the time, improvements in imaging technologies have greatly enhanced cancer diagnosis and monitoring. Advanced imaging modalities such as positron emission tomography, magnetic resonance imaging, and computed tomography (CT) scans now use algorithms and contrast agents to achieve sensitivity and resolution.^{7,8} This upgrade has brought about advancements in detecting tumors at a stage that accurately pinpoints their location and monitoring how patients respond to treatment.^{9,10}

Additionally, the exploration of biomarkers has greatly expanded the tools, for detecting cancer in its early stages. Biomarkers like microRNA patterns of DNA methylation found in circulating tumor cells and unique protein signatures have shown promise across types of cancer. These biomarkers possess levels of accuracy and sensitivity, opening up possibilities for their use in screening, prognosis determination, and tracking treatment responses. Innovative testing platforms have also played a role in enhancing cancer detection.^{11,12} Cutting-edge technologies like polymerase chain reaction (dPCR) single-cell sequencing and microfluidics-based assays enable sensitive analysis of even the tiniest amounts of biomarkers. These platforms revolutionize cancer management strategies by enabling reliable early diagnosis.

Furthermore, the emergence of intelligence (AI) and machine learning algorithms have become tools for analyzing large volumes of clinical and molecular data. AI-driven models assist in interpreting imaging results by identifying patterns and predicting cancer risks with accuracy. These technologies complement laboratory techniques by providing clinicians with insights into early cancer detection methods and personalized treatment planning. However, despite these advancements, challenges still exist when it comes to integrating these laboratory techniques into practice. There are challenges that hinder the use of these technologies, including standardization, cost effectiveness and the need, for extensive validation. Moreover, ethical factors such as privacy, data sharing and informed consent play a role in their implementation. The evolving laboratory techniques have brought about changes, in the field of early cancer detection and monitoring. The field of cancer diagnostics has experienced a transformation, with the introduction of

biopsies, genomic profiling, advanced imaging techniques, new biomarkers, innovative assay platforms and AI powered analytics.¹³ These advancements offer potential for providing interventions, personalized therapies and improved prognoses to individuals dealing with cancer. However, it is crucial to address the challenges in order to utilize the benefits of these innovations, in settings fully. The aim of the study was to examine the progress made in laboratory techniques for cancer detection and monitoring.

METHODS

On 26 November 2023 I conducted an analysis of articles, from the Cochrane Library, Pubmed, and Scopus. The focus of my research was to examine the advancements in laboratory techniques used for cancer detection and monitoring. Specifically, I concentrated on studies conducted in English since 2008 that prioritize the development of laboratory techniques for detecting cancer. My objective was to provide healthcare professionals with insights into assessment methodologies and early warning systems when utilizing laboratory techniques for early cancer detection and monitoring.

DISCUSSION

The development of laboratory methods has played a role in transforming the field of early cancer detection and monitoring strategies. These advancements in biopsies, cutting-edge imaging techniques, and genomic profiling have greatly expanded the tools available to doctors in their fight against cancer.^{14,15} Liquid biopsies, which examine circulating tumor cells (CTCs) or cell free DNA (cfDNA) provide an invasive way to track tumor activity and treatment responses in real-time. Because they are highly sensitive they allow for cancer detection. Help identify minimal residual disease influencing treatment decisions and prognosis.

Similarly, advanced imaging technologies like PET scans, MRI scans and CT scans have undergone improvements offering resolution and improved sensitivity. These tools enable detection of cancer well as precise localization and accurate monitoring of treatment responses thus refining patient management strategies. Furthermore, genomic profiling techniques such as generation sequencing (NGS) have revealed the genetic makeup of tumors opening doors for personalized medicine. NGS identifies changes that allow tailored therapies based on individual tumor characteristics. This personalized medicine approach reduces treatments while maximizing treatment efficacy and ultimately improving outcomes. However, despite these advancements integrating these techniques into clinical practice still poses challenges such as standardization issues, cost considerations and the need, for extensive validation. Furthermore, it is crucial to navigate the considerations related to confidentiality sharing of data and fair access. This is essential to guarantee the fair implementation of these advancements.

Clinical manifestation

Advancements in laboratory methods have brought about a transformation in the field of cancer care. These advancements have revolutionized every stage of the process, from suspicion and screening to treatment approaches and ongoing surveillance.¹⁶ The progress made in detection and screening is particularly noteworthy thanks to techniques that play a crucial role. Cutting-edge imaging technologies, combined with liquid biopsies empower healthcare professionals to identify precancerous lesions or tumors at their earliest stages, especially among high-risk populations. This enhanced screening capability allows for interventions that improve the chances of treatments and significantly impact patient outcomes. Furthermore, these advancements have redefined the principles of precision and personalized medicine in cancer care.^{17,18}

Techniques like generation sequencing (NGS) have revolutionized cancer diagnosis and treatment by providing genomic profiles. This deeper understanding enables tailored treatments that align with individual tumor characteristics ensuring therapies while minimizing unnecessary procedures. The impact of these personalized treatments is profound as they greatly influence patient outcomes and enhance quality of care. Additionally, these laboratory techniques are invaluable for monitoring treatment responses. Real-time analysis from biopsies and sophisticated imaging methods provide clinicians with information about treatment effectiveness enabling timely adjustments when needed to optimize patient care.¹⁹

The identification of disease (MRD) is another important clinical outcome of these laboratory methods. Advanced technologies that can detect amounts of cancer cells after treatment offer predictive information. Understanding the concept of disease (MRD) greatly impacts decisions regarding additional therapies or closer monitoring to reduce the risk of cancer recurrence. Moreover, these advancements play a role in assessing risk and implementing measures. Genetic testing and advanced risk assessment models help identify individuals who may be predisposed to types of cancer allowing for screening schedules and preventive strategies. Armed with these knowledge individuals can make choices about interventions to lower their risk or increase surveillance potentially changing the course of the disease and improving outcomes.

The broad impact of laboratory advancements in cancer detection and monitoring extends to every aspect of cancer care. These innovations represent a shift in how we approach cancer care- from detection and screening to guiding personalized treatments monitoring treatment responses detecting minimal residual disease and informing preventive measures. Their influence goes beyond diagnosis; they significantly shape treatment approaches. Ultimately impact patient outcomes. The continuous development of these techniques emphasizes

the importance of incorporating them into practice to optimize their potential for improving patient care and outcomes. This ongoing progress holds promise for a future where cancer management becomes increasingly precise effective and centered on the needs of each patient.

Management

Recent progress in laboratory methods has ushered in a period in the handling of cancer especially when it comes to early detection and continuous monitoring. These advancements have completely transformed the approaches used throughout the process of cancer care starting from suspicions and diagnosis all the way, to carefully selecting treatments, keeping a watchful eye on progress and long-term surveillance. The significant impact of advancements has greatly influenced the management of cancer, leading to precise and personalized approaches. This has transformed the way we deal with this disease.

One crucial aspect is detection and screening where improved laboratory methods have brought about changes. The introduction of imaging techniques and liquid biopsies has revolutionized cancer screening programs. These sensitive methods empower healthcare providers to identify tumors or precancerous lesions at their stages allowing for interventions when treatments are more manageable and outcomes are potentially better.^{20,21}

Additionally, these advancements have reshaped how we approach precision and personalized medicine, in cancer care. Techniques like generation sequencing (NGS) provide genomic profiling, giving us a deeper understanding of the molecular characteristics of tumors. This knowledge helps clinicians customize treatments based on the makeup of each tumor. By integrating these tools into cancer management practices we can ensure targeted therapies that minimize unnecessary treatments and potential side effects while optimizing treatment effectiveness. Monitoring treatment responses accurately is crucial for management. Laboratory techniques such as biopsies and advanced imaging offer real-time insights, into how tumors respond to different treatment modalities. These valuable insights enable healthcare professionals to make adjustments to treatments ensuring that patients receive the suitable and effective trajectory of care, throughout their battle, with cancer.

Monitoring tools not only assess the effectiveness of treatment. Also identify potential resistance mechanisms. This helps guide the development of alternative treatment approaches to manage diseases effectively. Additionally, detecting disease (MRD) plays a crucial role, in clinical management highlighting the importance of advancements in laboratory techniques. Sensitive technologies that can identify cancer cells after treatment provide valuable prognostic insights.

Once MRD is detected decisions regarding the intensity and duration of therapies or the need for surveillance

become critical. Taking an approach to managing disease significantly impacts patient outcomes by reducing the risk of recurrence and improving long term prognoses.²² Cancer diagnostic techniques are always.

Changing to meet the objective of providing accurate and timely diagnoses in the field of medical care. However, the challenges, in this field create opportunities for improving aspects of cancer diagnostics, such as identifying tumors and accurately monitoring their growth and spread. One way to improve cancer diagnostics is through efforts among radiologists pathologists and other specialists involved. Typically, the diagnostic process starts with imaging followed by a tissue biopsy. To ensure that biopsy results align with the gathered images constant communication between radiologists and pathologists is crucial. Engaging in multidisciplinary team discussions plays a role, in making diagnoses and creating effective treatment plans by leveraging the collective knowledge and perspectives of the group while also reducing diagnostic time.

Assessing risks and implementing measures are aspects of cancer management heavily influenced by advancements in laboratory techniques. Genetic testing and sophisticated risk assessment models empower healthcare providers to identify individuals at risk of developing cancers. With this knowledge, clinicians can create personalized screening schedules and proactive strategies ranging from risk-reducing surgeries to increased surveillance. Identifying high risk individuals on enables interventions that may prevent the onset or progression of cancer.

In summary advancements in laboratory techniques for detection and monitoring have brought about changes, in how we manage cancer clinically. These advancements have completely transformed the field of cancer treatment. They have improved the ability to detect and screen, for cancer at its stages customized treatments, for individuals monitored how well treatments are working identified the smallest amount of remaining disease and influenced preventative measures. The smooth incorporation of these laboratory tools, into clinical practice is crucial for improving patient outcomes. It allows for efficient management strategies ultimately enhancing the prognosis and quality of life, for people affected by cancer.

CONCLUSION

The field of cancer detection and monitoring has experienced a transformation thanks to advancements, in laboratory methods. The incorporation of biopsies, advanced imaging technologies and genomic profiling into practice has greatly enhanced the accuracy, sensitivity and customization of cancer management. Liquid biopsies, which are non-invasive and offer real time monitoring capabilities show potential for detecting cancer and assessing treatment response. Likewise, advanced imaging technologies provide clinicians with insights that enable tumor localization and treatment monitoring. The

introduction of genomic profiling techniques has empowered personalized treatment approaches, minimizing interventions and optimizing outcomes. However, to fully implement these advancements in practice, we must overcome challenges related to standardization cost effectiveness and ethical considerations. Addressing these obstacles is crucial to unlock the potential of these laboratory methods so that they can be accessed by all patients equitably while being ethically applied across populations. Ultimately by refining and integrating these laboratory methods we hold great promise in improving early cancer detection even further developing personalized treatment strategies tailored to each individuals needs while ultimately enhancing patient outcomes in the battle against cancer.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: Not required

REFERENCES

1. Loud JT, Murphy J. Cancer Screening and Early Detection in the 21st Century. *Semin Oncol Nurs.* 2017;33(2):121-8.
2. Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. *Cancers (Basel).* 2023;15(5):1579.
3. Li S, Xin K, Pan S, Wang Y, Zheng J, Li Z, et al. Blood-based liquid biopsy: insights into early detection, prediction, and treatment monitoring of bladder cancer. *Cell Mol Biol Lett.* 2023;28(1):28.
4. Raphael BJ, Dobson JR, Oesper L, Vandin F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. *Genome Med.* 2014;6(1):5.
5. Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. *Nat Rev Clin Oncol.* 2018;15(6):353-65.
6. Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. *Genome Med.* 2020;12(1):8.
7. Shegekar T, Vodithala S, Juganavar A. The Emerging Role of Liquid Biopsies in Revolutionising Cancer Diagnosis and Therapy. *Cureus.* 2023;15(8):e43650.
8. Roberto TM, Jorge MA, Francisco GV, Noelia T, Pilar RG, Andrés C. Strategies for improving detection of circulating tumor DNA using next generation sequencing. *Cancer Treat Rev.* 2023;119:102595.
9. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. *Cancer Rep (Hoboken).* 2023;6(2):e1764.
10. Liu CH, Grodzinski P. Nanotechnology for Cancer Imaging: Advances, Challenges, and Clinical Opportunities. *Radiol Imaging Cancer.* 2021;3(3):e200052.
11. Santos DAR, Gaiteiro C, Santos M, Santos L, Dinis-Ribeiro M, Lima L. MicroRNA Biomarkers as

- Promising Tools for Early Colorectal Cancer Screening-A Comprehensive Review. *Int J Mol Sci.* 2023;24(13):11023.
- 12. Staicu CE, Predescu DV, Rusu CM, Radu BM, Cretoiu D, Suciu N, et al. Role of microRNAs as Clinical Cancer Biomarkers for Ovarian Cancer: A Short Overview. *Cells.* 2020;9(1):169.
 - 13. Wu X, Zhu L, Ma PC. Next-Generation Novel Noninvasive Cancer Molecular Diagnostics Platforms Beyond Tissues. *Am Soc Clin Oncol Educ Book.* 2018;38(38):964-77.
 - 14. Hunter B, Hindocha S, Lee RW. The Role of Artificial Intelligence in Early Cancer Diagnosis. *Cancers (Basel).* 2022;14(6):1524.
 - 15. Babayan A, Pantel K. Advances in liquid biopsy approaches for early detection and monitoring of cancer. *Genome Med.* 2018;10(1):21.
 - 16. Houlihan CF, Whitworth JA. Outbreak science: recent progress in the detection and response to outbreaks of infectious diseases. *Clin Med (Lond).* 2019;19(2):140-4.
 - 17. Yang J, Nittala MR, Velazquez AE, Buddala V, Vijayakumar S. An Overview of the Use of Precision Population Medicine in Cancer Care: First of a Series. *Cureus.* 2023;15(4):e37889.
 - 18. Strianese O, Rizzo F, Ciccarelli M, Galasso G, D'Agostino Y, Salvati A, et al. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. *Genes (Basel).* 2020;11(7):747.
 - 19. Liaropoulos I, Liaropoulos A, Liaropoulos K. Critical Assessment of Cancer Characterization and Margin Evaluation Techniques in Brain Malignancies: From Fast Biopsy to Intraoperative Flow Cytometry. *Cancers (Basel).* 2023;15(19):4843.
 - 20. Haney K, Tandon P, Divi R, Ossandon MR, Baker H, Pearlman PC. The Role of Affordable, Point-of-Care Technologies for Cancer Care in Low- and Middle-Income Countries: A Review and Commentary. *IEEE J Transl Eng Health Med.* 2017;5:2800514.
 - 21. Smania MA. Liquid biopsy for cancer screening, diagnosis, and treatment. *J Am Assoc Nurse Pract.* 2020;32(1):5-7.
 - 22. Dalle I, Jabbour E, Short NJ. Evaluation and management of measurable residual disease in acute lymphoblastic leukemia. *Ther Adv Hematol.* 2020;11:2040620720910023.

Cite this article as: Shaheen HM, Harbi AJ, Khormi AM, Abuzaid RS, Alshahrani AM, Geteni MM, et al. Advancements in laboratory techniques for early cancer detection and monitoring. *Int J Community Med Public Health* 2024;11:424-8.