Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20240299

Trends in pneumatic compression devices and their impact on patient outcomes: a review

Gagandeep Kaur¹, Nisha Khandelwal^{2*}, Bhavna Rani³

¹Department of Nursing, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India

Received: 21 November 2023 **Accepted:** 10 January 2024

*Correspondence: Nisha Khandelwal,

E-mail: nishajuly1994@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Pneumatic compression devices have seen a remarkable evolution in recent years with innovative designs and applications. This review explores the trends in pneumatic compression devices and their impact on patient outcomes. Pneumatic compression devices are widely used in various medical contexts, such as wound care, lymphedema management, and venous thromboembolism prevention. This review summarizes the findings of recent studies that investigate the effectiveness of these devices in improving patient outcomes. We discuss the evolving technology, clinical applications, and evidence of their impact on parameters like wound healing, edema reduction, and venous thromboembolism prevention. Through an analysis of the current literature, we aim to provide valuable insights for healthcare practitioners, policymakers, and researchers, emphasizing the significance of pneumatic compression devices in modern patient care.

Keywords: Pneumatic compression devices, Healthcare practitioners, Quality of life

INTRODUCTION

The use of pneumatic compression devices in healthcare has undergone a remarkable transformation in recent years. These devices, initially developed for the prevention and management of venous thromboembolism, have expanded their application to a wide range of medical conditions, including wound care, lymphedema management, and more. This review delves into the evolving landscape of pneumatic compression devices and their profound impact on patient outcomes. Pneumatic compression devices, also known as intermittent pneumatic compression (IPC) devices, have become indispensable tools in modern healthcare. They function by applying intermittent pressure to specific areas of the body, promoting blood flow, reducing edema, and aiding in the prevention of clot formation. The versatility of these devices is reflected in

their diverse applications, encompassing not only deep vein thrombosis prophylaxis but also chronic wound healing, lymphatic disorders, and chronic venous insufficiency.⁴

As the healthcare landscape continually evolves, understanding the latest trends in pneumatic compression devices is crucial for clinicians, researchers, and policymakers. The advancements in technology and the expanding evidence base surrounding these devices warrant a comprehensive review to assess their impact on patient care. This review aims to synthesize the existing literature, shedding light on the effectiveness of pneumatic compression devices in improving patient outcomes and offering insights that can guide healthcare practices and shape future research endeavours. In the subsequent sections, we will delve into the methods used to gather relevant information, the various types and applications of

²Department of Nursing, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India ³State Institute of Nursing and Paramedical Sciences, A Constituent College of Baba Farid University of Health Sciences, Faridkot, Punjab, India

these devices, and the substantial impact they have demonstrated across different medical domains. Pneumatic compression devices (PCDs) come in several types, each designed for specific medical applications.

METHODS

This study explores the use of pneumatic compression devices among patients with chronic illnesses. A comprehensive literature search was conducted to identify the prevalence of PCDs and their impact on the quality of life of patients. Additionally, the study investigates various assistive devices that aid these individuals in improving their daily life routines. Secondary sources, including books, journals, articles, published research papers, theses, and dissertations, were utilized to collect pertinent data for the study.

Types of PCDs

Sequential compression devices

Sequential compression devices (SCDs) consist of inflatable sleeves or cuffs that are wrapped around the patient's legs. The device sequentially inflates and deflates these cuffs in a distal-to-proximal manner. This sequential action promotes blood flow in the veins, preventing stasis and reducing the risk of DVT. Used primarily for deep vein thrombosis (DVT) prevention in postoperative and immobile patients.^{5,6}

Lymphedema PCDs

These devices utilize segmented inflatable sleeves or garments. They apply gentle, sequential pressure to affected limbs to encourage the movement of excess lymphatic fluid towards functional lymph nodes, reducing swelling and discomfort. It is designed for the management of lymphedema, a condition characterized by swelling due to lymphatic system dysfunction.⁷

Arterial PCDs

These devices deliver intermittent pneumatic compression to enhance arterial blood flow. They typically feature overlapping chambers that inflate sequentially, promoting arterial refill and reducing symptoms like pain and ulcers in PAD patients. Used to improve arterial circulation in patients with peripheral arterial disease (PAD) or poor arterial blood flow.⁸

Wound healing PCDs

These devices help improve microcirculation and tissue oxygenation by periodically inflating and deflating, mimicking the body's natural mechanisms for blood circulation. Increased blood flow and oxygen supply can enhance wound healing. Applied in wound care to support tissue oxygenation and accelerate the healing process in chronic wounds.⁹

Recovery and sports PCDs

These devices typically use inflatable boots or sleeves that sequentially compress and release, aiding in the removal of metabolic waste products from muscles. This promotes faster recovery and may reduce muscle fatigue. It is popular in sports and athletic recovery to reduce muscle soreness and enhance recovery post-exercise. ¹⁰

Multi-modal prophylaxis systems

These systems combine intermittent pneumatic compression with other VTE prevention methods, such as anticoagulant medications. The pneumatic compression component helps prevent stasis and clot formation in the deep veins, especially in patients who are unable to move. Used in hospitals for the prevention of venous thromboembolism (VTE) in at-risk patients.¹¹

PCDs work by periodically applying pressure to specific areas of the body, promoting blood flow, reducing edema, and preventing complications like DVT.⁴ The sequential compression mimics the natural physiological processes of the circulatory and lymphatic systems. The devices are typically controlled by a programmable unit that allows healthcare professionals to set the pressure, duration, and cycle times according to the patient's needs and medical condition.³

Impact of PCDs

PCDs have shown their ability to positively influence patient outcomes across a range of healthcare contexts. These impacts vary depending on the medical condition being treated. In the prevention of DVT, PCDs have effectively reduced the incidence of clots in high-risk patients, enhancing patient safety and lowering healthcare costs. PCDs also play a role in wound healing, promoting tissue oxygenation and microcirculation, ultimately accelerating wound recovery and improving patients' quality of life. For those managing lymphedema, these devices contribute to reduced swelling and discomfort, leading to enhanced symptom control and better overall well-being. In cases of peripheral arterial disease (PAD). PCDs aid in improving arterial circulation, reducing symptoms like leg pain, and enhancing limb function. Athletes benefit from PCDs as well, as they expedite recovery and reduce muscle soreness, allowing for quicker returns to training and competition. Furthermore, in venous ulcer prevention, PCDs decrease the risk of ulcer development, particularly in patients with chronic venous insufficiency, improving patient comfort and quality of life. It's important to emphasize that the effectiveness of PCDs relies on various factors, including proper patient selection, device settings, and adherence to treatment protocols.3,12-17

Healthcare professionals play a pivotal role in guiding patients to achieve the best results. The impact of PCDs on patient outcomes continues to be an area of active research,

with healthcare providers continually refining their understanding of how to apply these devices optimally for specific medical conditions. It's important to note that while PCDs have demonstrated positive impacts on patient outcomes in various contexts, their effectiveness can depend on factors like appropriate patient selection, device settings, and adherence to prescribed treatment protocols. Additionally, healthcare professionals play a crucial role in assessing patient needs and providing guidance on the use of PCDs to achieve optimal results. The impact of PCDs on patient outcomes is an area of ongoing research, and healthcare providers continue to refine their understanding of how to best apply these devices for specific medical conditions.

Table 1: Representing indications of PCDs.

S. no.	Indications of PCDs
1	Deep vein thrombosis
2	Pulmonary embolism
3	Venous thromboembolism
4	Wound
5	Managing lymphedema
6	Peripheral arterial disease
7	Venous ulcer prevention
8	Chronic venous insufficiency

Precautions while using PCDs

PCDs are valuable tools for improving circulation and managing various medical conditions. However, it's essential to use them safely and effectively. When considering the use of PCDs, it's essential to exercise caution and consult with a healthcare professional to ensure your specific needs are met with the right device and settings. Proper sizing, regular skin assessment, and adherence to recommended pressure settings are crucial for both safety and effectiveness. Monitoring sensations during PCD use, maintaining correct positioning, and taking breaks as advised are key practices. It's vital to be aware of contraindications and to familiarize yourself with the device's operation and maintenance. Having an emergency plan in place ensures immediate action in case of discomfort. A cautious approach, guided by healthcare professionals, can unlock the benefits of improved limb health while prioritizing safety. 3,7,8,18-21

It's crucial to approach the use of PCDs with caution and in consultation with a healthcare professional. When used correctly, these devices can be highly beneficial in improving circulation, reducing edema, and supporting overall limb health. However, improper use can lead to adverse effects and discomfort. Always prioritize safety and the guidance of a qualified healthcare provider.

Contraindication of PCDs

PCDs are generally safe and effective for improving circulation and managing various medical conditions.

However, there are specific contraindications, circumstances, or medical conditions in which the use of PCDs should be avoided or approached with caution. It is crucial to consult with a healthcare professional before using PCDs, especially if you have any of the following contraindications. When considering the use of PCDs, it is imperative to be aware of various contraindications to ensure patient safety and prevent potential complications. Acute DVT represents a situation where PCDs are contraindicated, as their use could dislodge the clot and trigger severe complications. Similarly, individuals with severe PAD may not be suitable candidates for PCDs, as the application of external pressure can potentially worsen the compromised arterial circulation. Moreover, in cases of severe congestive heart failure, caution is warranted, as PCDs can increase venous return to the heart, thereby exacerbating the heart's workload.

Known blood clotting disorders, uncontrolled hypertension, active infections, severe edema due to renal failure, acute limb cellulitis, severe atherosclerosis, significant dermatological conditions, and circulatory compromise are all relative contraindications that should be carefully considered. It is vital to thoroughly evaluate the patient's medical history and consult with a healthcare professional to ensure the safe and appropriate use of PCDs while mitigating potential risks. These contraindications highlight the importance of individualized assessment and guidance from a healthcare professional when considering the use of PCDs. Healthcare providers can help determine the appropriateness of PCDs, select the correct settings, and ensure patient safety in alignment with the individual's specific medical condition and needs.²²

Table 2: Representing contraindications of PCDs. 22,23

Absolute contraindications of PCDs	Relative contraindications of PCDs
Acute deep vein	Known blood clotting disorders
thrombosis (DVT)	disorders
Severe peripheral arterial disease (PAD)	Uncontrolled hypertension
Severe congestive heart failure	Active infections
Gangrene	Severe edema due to renal failure
Extreme leg deformity	Acute limb cellulitis
Recent skin graph	Severe atherosclerosis
Post op vein ligation	Significant dermatological conditions
	Circulatory compromise

Some gaps in the current research on pneumatic compression devices

Pneumatic compression devices have shown promise in managing medical conditions, but further research is needed to optimize their effectiveness and accessibility. This includes establishing standardized protocols for pressure settings and treatment durations, determining optimal compression patterns for diverse populations, and tailoring treatment plans to individual characteristics. Innovations in monitoring systems like Telehealth and remote monitoring, comparative research on device effectiveness, and long-term safety studies are necessary. Additionally, understanding the physiological mechanisms behind their efficacy, conducting cost-benefit analyses, and addressing barriers to access and patient education are crucial for maximizing their potential in clinical practice. These gaps highlight areas where research can significantly contribute to optimizing the use of pneumatic compression devices in healthcare and improving patient outcomes.¹

DISCUSSION

The reviewed article on pneumatic compression devices highlights the significant role of these devices in preventing DVT and enhancing blood circulation in individuals at risk, such as those undergoing surgery or experiencing limited mobility. The systematic review evaluated IPCDs' effectiveness in postoperative surgical patients, considering outcomes like mortality, VTE, deep vein thrombosis, major bleeding, ease of use, and adherence. Based on 14 randomized trials and three observational studies, mostly in joint arthroplasty patients, IPCDs proved comparable to anticoagulation for major outcomes, potentially reducing VTE risk when combined with anticoagulation. IPCDs might also carry a lower risk of major bleeding.²⁴ In conclusion, IPCDs are suitable for VTE thrombosis prophylaxis per clinical guidelines, but selecting a specific device remains challenging due to limited evidence, warranting further research. Another study was conducted by Yamany et al to assess the impact of sequential pneumatic compression therapy on various factors in women with varicose veins. Twenty-eight female participants were divided into control and experimental groups. Both groups received lower extremity exercises, but the experimental group also received daily sequential pneumatic compression therapy for six weeks. The results revealed significant improvements in venous blood flow, pain levels, and quality of life in both groups. However, the experimental group showed significantly higher maximum and mean blood flow velocities, as well as better quality of life compared to the control group. Sequential pneumatic compression therapy was found to be effective in increasing venous blood flow, reducing pain, and enhancing the quality of life for women with varicose veins.²⁵ The systematic review provides valuable insights into the historical and contemporary treatment strategies for upper extremity lymphedema following breast carcinoma treatment. It highlights the role of intermittent pneumatic compression pumps within multidisciplinary approaches that include garments, exercises, and massage. By combining traditional and accessible techniques, these regimens have shown promise in reducing the cosmetic and physical challenges of acquired lymphedema. While the role of surgery remains uncertain, pharmacotherapies hold potential as complementary treatments. In summary, using these readily available methods can alleviate the severity of lymphedema, addressing not only the physical but also the functional, cosmetic, and emotional aspects of this potentially disabling condition.²⁶

However, despite the existing body of research, there are gaps in understanding the long-term effects of using these devices and the optimal duration of use in various patient populations. Furthermore, current trends suggest an increasing integration of pneumatic compression devices in home-based care, underscoring the need for further studies to assess their effectiveness and safety in this setting. Nonetheless, the review underscores the device's non-invasive nature and ease of use, making it a feasible prophylactic option with minimal adverse effects. The article also suggests the need for further studies to determine the optimal duration and frequency of device usage for different patient groups, emphasizing the importance of personalized approaches in clinical practice.

CONCLUSION

In conclusion, the comprehensive review underscores the pivotal role of pneumatic compression devices in the prevention of DVT and the promotion of blood circulation, particularly in high-risk patient populations, including postoperative individuals and the elderly with limited mobility. While the current body of research demonstrates their efficacy and non-invasive nature, there remains a crucial need for further investigations to determine the long-term effects and optimal usage duration in different patient cohorts. The emerging trend of integrating these devices into home-based care calls for additional studies to evaluate their effectiveness and safety in this setting. With continued research and personalized approaches in clinical practice, pneumatic compression devices hold significant promise as an essential prophylactic option with minimal adverse effects for individuals at risk of DVT and impaired circulation.

Recommendations

It is crucial to focus on several key recommendations for the use of PCDs effectively. First and foremost, patient education should be a priority, with comprehensive instructions provided to patients and caregivers regarding the appropriate usage, duration, and frequency of the devices. Customizing treatment plans based on individual patient needs is equally essential, considering factors such as specific risk factors for DVT, mobility levels, and any preexisting medical conditions. Regular monitoring and follow-up are necessary to assess the progress and make any necessary adjustments to the treatment plan. Moreover, it is imperative to support patient adherence through clear instructions, reminders, and addressing any concerns or difficulties they may encounter while using the device. Integrating pneumatic compression devices into home-based care requires providing patients and

caregivers with the necessary resources and support for safe and effective use outside of a clinical setting. Lastly, healthcare provider training programs should be established to ensure that professionals are well-versed in the latest guidelines and best practices, allowing them to make informed decisions and provide optimal care to their patients. By implementing these recommendations, healthcare providers can maximize the benefits of PCDs, effectively preventing DVT and enhancing blood circulation in at-risk patient populations.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Feldman JL, Stout NL, Wanchai A, Stewart BR, Cormier JN, Armer JM. Intermittent pneumatic compression therapy: A systematic review. Lymphology. 2012;45(1).
- Morris RJ. Intermittent pneumatic compression -Systems and applications. J Med Engineer Technol. 2008;32.
- 3. Proctor MC, Greenfield LJ, Wakefield TW, Zajkowski PJ. A clinical comparison of pneumatic compression devices: The basis for selection. J Vasc Surg. 2001;34(3).
- 4. Chen AH, Frangos SG, Kilaru S, Sumpio BE. Intermittent pneumatic compression devises Physiological mechanisms of action. Eur J Vasc Endovasc Surg. 2001;21(5):383-92.
- 5. Kakkos SK, Griffin M, Geroulakos G, Nicolaides AN. The efficacy of a new portable sequential compression device (SCD Express) in preventing venous stasis. J Vasc Surg. 2005;42(2).
- 6. Eliasson AH, Lettieri CJ. Sequential compression devices for treatment of restless legs syndrome. Medicine. 2007;86(6).
- 7. Muluk SC, Hirsch AT, Taffe EC. Pneumatic compression device treatment of lower extremity lymphedema elicits improved limb volume and patient-reported outcomes. Eur J Vasc Endovasc Surg. 2013;46(4).
- 8. Labropoulos N, Leon LR, Bhatti A, Melton S, Kang SS, Mansour AM, et al. Hemodynamic effects of intermittent pneumatic compression in patients with critical limb ischemia. J Vasc Surg. 2005;42(4).
- Nikolovska S, Arsovski A, Damevska K, Gocev G, Paviova L. Evaluation of two different intermittent pneumatic compression cycle settings in the healing of venous ulcers: A randomized trial. Medical Science Monitor. 2005;11(7).
- 10. Winke M, Williamson S. Comparison of a Pneumatic Compression Device to a Compression Garment During Recovery from DOMS. Int J Exerc Sci. 2018;11(3).
- 11. Gogia SB, Appavoo NC, Mohan A, Kumar MB. Comparative results of non-operative multi-modal

- therapy for filarial lymphoedema. Indian J Plast Surg. 2009;42(1).
- 12. Urbankova J, Quiroz R, Kucher N, Goldhaber SZ. Intermittent pneumatic compression and deep vein thrombosis prevention: A meta-analysis in postoperative patients. Thromb Haemost. 2005;94(6).
- 13. Smith PC, Sarin S, Hasty J, Scurr JH. Sequential gradient pneumatic compression enhances venous ulcer healing: A randomized trial. Surgery. 1990;108(5).
- 14. Berliner E, Ozbilgin B, Zarin DA. A systematic review of pneumatic compression for treatment of chronic venous insufficiency and venous ulcers. J Vasc Surg. 2003;37(3).
- 15. Waller T, Caine M, Morris R. Intermittent pneumatic compression technology for sports recovery. In: The Engineering of Sport. 2006;6.
- 16. Manfredini F, Malagoni AM, Felisatti M, Mandini S, Lamberti N, Manfredini R, et al. Acute oxygenation changes on ischemic foot of a novel intermittent pneumatic compression device and of an existing sequential device in severe peripheral arterial disease. BMC Cardiovasc Disord. 2014;14.
- 17. Tran K, Argáez C. Intermittent Pneumatic Compression Devices for the Management of Lymphedema: A Review of Clinical Effectiveness and Guidelines. Canadian Agency for Drugs and Technologies in Health. 2018;1.
- 18. 18. Whitelaw GP, Oladipo OJ, Shah BP, DeMuth KA, Coffman J, Segal D. Evaluation of intermittent pneumatic compression devices. Orthopedics. 2001;24(3).
- 19. Karaca-Mandic P, Hirsch AT, Rockson SG, Ridner SH. The cutaneous, net clinical, and health economic benefits of advanced pneumatic compression devices in patients with lymphedema. JAMA Dermatol. 2015;151(11).
- 20. Partsch H. Intermittent pneumatic compression in immobile patients. Int Wound J. 2008;5.
- 21. Liu P, Liu J, Chen L, Xia K, Wu X. Intermittent pneumatic compression devices combined with anticoagulants for prevention of symptomatic deep vein thrombosis after total knee arthroplasty: A pilot study. Ther Clin Risk Manag. 2017;13.
- 22. Rabe E, Partsch H, Morrison N, Meissner MH, Mosti G, Lattimer CR, et al. Risks and contraindications of medical compression treatment A critical reappraisal. An international consensus statement. Phlebology. 2020;35.
- 23. Auguste KI, Quiñones-Hinojosa A, Berger MS. Efficacy of mechanical prophylaxis for venous thromboembolism in patients with brain tumors. Neurosurgical focus. 2004;17.
- Pavon JM, Adam SS, Razouki ZA, McDuffie JR, Lachiewicz PF, Kosinski AS, et al. Effectiveness of Intermittent Pneumatic Compression Devices for Venous Thromboembolism Prophylaxis in High-Risk Surgical Patients: A Systematic Review. J Arthroplast. 2016;31.

- 25. Yamany A, Hamdy B. Effect of sequential pneumatic compression therapy on venous blood velocity, refilling time, pain and quality of life in women with varicose veins: A randomized control study. J Phys Ther Sci. 2016;28(7).
- Brennan MJ, Miller LT. Overview of treatment options and review of the current role and use of compression garments, intermittent pumps, and

exercise in the management of lymphedema. In: Cancer. 1998.

Cite this article as: Kaur G, Khandelwal N, Rani B. Trends in pneumatic compression devices and their impact on patient outcomes: a review. Int J Community Med Public Health 2024;11:1016-21.