Original Research Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20233118

Effect of supplementation of Purslane-Portulaca oleracea in hypercholesterolemic subjects

S. Tarkergari¹, K. Waghray²*, S. Gulla³

Received: 05 August 2023 Accepted: 21 September 2023

*Correspondence:

K. Waghray,

E-mail: kavitagl@rediffmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: *Portulaca oleracea* (Purslane) is a medicinal plant containing diverse phyto constituents grown all over the world. Several studies have reported its pharmacological effects like, antihypertensive, anti-inflammatory antioxidant, hypoglycemic, hypocholesterolemic, hypotriglyceridemia neuroprotective effects.

Methods: Dried Portulaca oleraca leaves were incorporated into spice powder/ karampodi a south India food adjunct which was used for supplementation studies for 90 days (3 months) among hyper cholesterolemic subjects after obtaining a written informed consent. Biochemical parameters like lipid profile, i.e., total cholesterol, low density lipoprotein cholesterol, triglycerides, high density lipoprotein cholesterol, very low-density lipoprotein cholesterol, kidney function test, Liver function test were assessed. Baseline information, their medical history and 24hr dietary recall was elicited from the subjects through a pretested schedule.

Results: The results have shown that the total cholesterol levels and its fractions along with triglycerides were significantly decreased, HDL-C increased significantly in the test groups from pre-supplementation to during-supplementation and were stable at post-supplementation period.

Conclusions: Our results indicated that the spice powder was rich in polyunsaturated fatty acid had a strong hypo cholesterolemic and hypotriglyceridemic effect.

Keywords: Medicinal, Food adjunct, Hypercholesterolemic, Supplementation, Cholesterol and its fractions

INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death globally. An estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to heart attack and stroke. Over three quarters of CVD deaths take place in low and middle-income groups. Out of the 17 million premature deaths (under the age of 70) due to non-communicable diseases in 2019, 38% were caused by CVDs. Most cardiovascular diseases can be prevented by addressing behavioral risk factors such as tobacco use, unhealthy diet and obesity, physical inactivity and harmful use of alcohol. It is

important to detect cardiovascular disease as early as possible so that management with counseling medicines and diet can begin.¹ Purslane (*Portulacaoleracea*) is an annual plant belonging to Portulacaceae and is commonly called "Pigweed" or "Little hogweed' in English, Gangapaayala/Peddapaayala/Peddapaavilaaakukoora" in Telugu, "Khursa/Naunia/Chotalunia" in Hindi, "Parippukeerai" in Tamil and "Bruhalloani" in Sanskrit. It can be frequently seen in places such as vegetable gardens and empty spaces as well as any roadside. In the Western style, it can be mainly used with lettuce for salads.² Also, it can be dried and used as a material for various dishes as well as tea or soup.^{3,4} In Korea, people used to blanch a

¹BHEL General Hospital, Ramachandrapuram, Hyderabad, Telangana, India

²School of Food Technology and Nutrition, Loyola Academy, Alwal, Secunderabad, Telangana, India

³Department of Food Technology, College of Technology, Osmania University, Hyderabad, Telangana, India

tender shoot of the plant in summer to preserve them for eating throughout the winter.⁵ Purslane shows higher amounts of certain biological components, than many other plants including oleic acid, linoleic acid and ylinolenic acid, and has been reported to suppress cancer or be effective in decreasing the occurrence rate of heart diseases.^{6,7} Also, Purslane contains great amounts of nutrients such as tocopherol and ascorbic acid.8 Moreover, purslane extract shows an antioxidant activity based on phenolic compounds, including flavonoids.^{5,9,10} which are known to lower cholesterol or triglyceride levels in hyperlipidemic rats. 11,12 However, there are few studies related to the prevention of hyperlipidemia by purslane. 13-¹⁵ To verify the biological effect of purslane on hyperlipidemia, this study focuses on the effect of supplementation of dehydrated purslane spice powder on the change of the lipid components and diabetics in human subjects.

METHODS

About 60 individuals who were on lipid-lowering interventions, between 40 and 60 years of age and had previously recorded total cholesterol (Total-C) values between the above 250 mg/dl to 270 mg/dl, low density lipoproteins LDL-C values were between 80 to 160 mg/dl for age and sex, as outlined by the Lipid Research Clinics and who underwent a recent cholesterol screening at, family practice clinics for diabetic screenings in the BHEL General Hospital, Ramachandrapuram, Hyderabad were selected. Subjects were further evaluated using two additional complete fasting lipid profiles that included Total-C, LDL-C, HDL-C, and triglycérides. Those whose total cholesterol for age and sex (Lipid Research Clinics 1980) based on the mean of the baseline measurements were invited to participate in the study. The resulting sample (n=60) was grouped for this analysis into test group and apparently normal group sub groups as displayed in (Table 2). Subjects gave written informed consent for this study. Subjects were supplemented with 15g a day spice powder of dehydrated purslane for a period of three months. Biochemical parameters like lipid profile, i.e., Total cholesterol, LDL-C, Triglycerides, HDL, VLDL were assessed. The kidney functioning capacity was assessed by measuring the levels of serum creatinine, urea and uric acid. 17-22 Liver function test were assessed by serum bilirubin, alkaline phosphatase, alkaline amino transferase (SGPT/ALAT) using standard kits with help of Roche/Hitachi 904/911 automatic enzyme analyzer. Baseline information, their medical history and 24hr dietary recall was elicited from the subjects through a pretested schedule.²³⁻²⁵

Selection criteria

The subjects who consented were included on the criteria that they were screened previously and were recorded with total cholesterol (TOTAL-C) values between the 50th and 95th percentile for age and sex, as outlined by the Lipid research clinics.

Period of study

During the study period of 9 months first 3 months from September 2017 to November 2017 a base line study was conducted, between December 2017 and February 2018 supplementation of the developed product was given and between March 2018 and may 2018 a follow up study was taken up. A written consent was obtained from the subjects for their willingness to participate in the study for the said period. The covariance of the variables under study was measured to statistical analysis of the results was measured and compared.

RESULTS

The data pertaining to sex mean age BMI income medical history of the subjects is displayed in (Table 1-2). Daily nutrient intake of pulses, green leafy vegetables, other vegetables, and milk and milk products was greater in test group than that of apparently normal group for all nutrients studied except for cereals and oils and fats and meat and meat products (Table 3). Cereals intake averaged 375.3±51.66 g/day, (apparently normal group) and 365.7±40.1 g/day (test group) for all subjects, 42.6±18 g/day of pulses for apparently normal group and 51.23± 13.4 g/day of pulses for test group was recorded as daily intake and oils and fats (67.2±40.1 g/day in apparently normal group and 61.4±37.33 g/day in test group), meat and meat products (75.6±11.42 g/day in apparently normal group and 70.4±9.31 g/day in test group) were consumed more than the recommended daily allowances Table-8. Subgroup analyses revealed that green leafy vegetables, other vegetables, milk and milk products were consumed less than the RDA. Health professionals have recommended decrease of intake of dietary fat and cholesterol to reduce the risk of CVD.

Total cholesterol

The changes of effect of supplementation of the 15 g a day spice powder of Portulaca oleracea on total cholesterol in hypercholesterolemic subjects in pre supplementation, during supplementation and post supplementation is shown in (Table 4). The total cholesterol decreased significantly in the hypercholesterolemic group in comparison with the apparently normal group who were not on supplementation but were on statins. The total cholesterol prior to the supplementation in the first three months was seen to range from 269.2±17.1 mg/dl to 269.9±17.1 mg/dl were on statins 5 to 10 mg per day and was seen to be significantly reduced on supplementation from 208.5 \pm 21.2 mg/dl (first month) to 178.1 \pm 15.7 mg/dl (second month) to further 158.4±12.6 mg/dl (third month) indicating 39% reduction, further post supplementation consecutive three months analysis levels increased from 160 mg/dl to 167 mg/dl. The other lipid parameters like LDL, HDL, VLDL and Triglycerides which are shown in (Table 5).

Table 1: General information of the selected hypercholesterolemic human subjects.

Parameters	Apparently normal (N=30)	P value	Test group (N=30)	P value	
Gender, N (%)					
Males	14 (46.66)	0.3059	17 (56.66)	0.4422	
Females	16 (53.33)	0.3039	13 (43.33)		
Mean age (years)					
Males	50.0±4.5	0.8090	48.0±6.2	1.000	
Females	48.0±4.4	0.8090	48.0±3.93		
Mean height (cm)					
Males	169.12±5.94		169.9±3.56		
Females	153.0±3.45	-	148.8±2.98	-	
Mean weight (kg)					
Males	71.5±6.83		75.0	-	
Females	63.1±5.58	•	65.0±4.46		
Mean BMI (weight/he	eight²)				
Males	25.0±2.35	0.0015	26.1±1.58	-	
Females	27.0±2.3	0.0013	29.4±2.28		
Categories of BMI, N (%)					
Normal weight	7 (23.33)	_	8 (26.66)		
Over weight	21 (70)	-	20 (66.6)	0.955	
Obese	2 (6.66)		2 (6.66)		
Social status, N (%)					
Middle income	7 (23.33)		8 (26.66)		
Upper middle income	16 (3.33)	-	14 (46.66)	0.875	
Higher income	7 (23.33)		8 (26.66)		

Table 2: Medical history of the selected patients.

Parameters	Apparently normal (N=30)	Test group (N=30)	P value	
Mean blood pressure (mmHg)				
Systole	139.88	135.21	0.3148	
Diastole	85.22	83.0	0.2822	
Mean duration of disease (years)	3.26	3.14	0.7867	
Oral drugs	Statins (5mg/10mg)			
Family history, Positive history				
Mother	2 (6.66)	2 (6.66)		
Father	9 (30)	9 (30)	0.005	
Brother	1 (3.33)	2 (6.66)		
Both parents	-	-	0.985	
Grand parents	1 (3.33)	1 (3.33)		
Negative history	17 (56.66)	16 (53.33)		
Personal habits				
Smoking	3 (10)	-	0.194	
Alcohol	2 (6.66)	3 (10)		
None	25 (83.33)	27 (90)		

The mean triglyceride levels ranged from 151.67±5.9 mg/dl to 153.33±5.9 mg/dl in the hypercholesterolemic subjects and 153.47±8.2 mg/dl to 156.60±7.96 mg/dl in the apparently normal group for the first three months prior to the supplementation of the spice powder made with *Portulaca oleracea*. Mean TG levels of hypercholesterolemic subjects during supplementation of three months was seen to decrease from 141.87±7.66 mg/dl to 131.10±5.65 mg/dl vs. apparently normal group who had a triglyceride level range of 158.0±7.52 mg/dl to 159.77±6.21 mg/dl. The mean TG value post

supplementation for the consecutive next three months ranged between 128.83±5.55 mg/dl to 134.37±4.86 mg/dl in the hyper-cholesterolemic subjects and 160.80 mg/dl to 161.67 mg/dl in the apparently normal group subjects respectively The subjects had an average LDL-C level of 150.61±19 mg/dl (range 149.43±16.22, 152.83±18.48 mg/dl) during the consecutive three month period prior to supplementation which reduced to 108±9.26 mg/dl, 97.33±5.97mg/dl, and 88.13±8.8 mg/dl in the consecutive three month period of supplementation.

Table 3: Mean food intake of hypercholesterolemia subjects by 24 hr dietary recall method.

Food groups (g)	Apparently normal (N=30) (mean)	Test group (N=30) (mean)	RDA
Cereals	375.3	365.7	350
Pulses	42.6	51.23	30
Green leafy vegetables	46.6	52.3	200
Other Vegetables	103.3	106.33	200
Milk and milk products	108.8	110.2	150
Oils & fats	67.2	61.4	20
Meat & meat products	75.6	70.4	40

There was an increase in the values after the three months period of post supplementation from 120.7±10.89 mg/dl to

134.53±9.56 mg/dl. The apparently normal group group had a mean of 152.87±18.83 mg/dl (range 149.97 ± 16.22 , 158.40 ± 9.1 mg/dl) for the entire 9-months period (Table 6). The mean VLDL values were 30.51±1.22 mg/dl for subjects with hyper cholesterolemia during the 3 month period of pre-supplementation of spice powder, and 27.22±1.12 mg/dl during the period of supplementation and 26.3±1.16 mg/dl the consecutive 3 months of post supplementation whereas apparently normal group had a mean VLDL of 30.25±1.67 mg/dl (range 29.73±1.67, 31.33±1.27 mg/dl) vs. the normal range of 5-40 mg/dl, so both the subjects and apparently normal group were within the normal range and significantly different. (p<0.05). The HDL cholesterol was 31.87±3.2 mg/dl, 33.3±2.93mg/dl, and 34.20±2.9 mg/dl for the first three months of the study prior to the supplementation of Portulaca oleracea (purslane) spice powder which showed a great increase to 47.50±3.0, 51.53±3.46, and 53.77±2.32 mg/dl during the 3-month period of supplementation in the hypercholesterolemic subjects.

Table 4: Effect of *Portulaca oleracea* spice powder supplementation on the cholesterol levels of selected hyper cholesterolemic subjects (n=60).

Period of supplementation (months)	Cholesterol levels (mg/dl)	% reduction
Pre- supplementation		
1	269.9±17.1 (270.1±14.9)	-
2	269.5±12.1 (272.3±13.7)	-
3	261.2±17.3 (274.9±13.5)	-
During supplementation		
1	208.5±21.2* (275.1±13.6)	22.7
2	178.1±15.7* (277.3±25)	34.0
3	158.4±12.6* (278.7±11.3)	39.38
Post supplementation		
1	160.0±13.4* (278.3±9.6)	-
2	162.0±16* (279.3±9.3)	-
3	167.4±9.1* (280.0±10.6)	-

^{*}Significant at 0.05% level (p<0.05).

Weaning away from the purslane spice powder in the consequent 3 months post supplementation showed a slight decrease of HDL cholesterol $44\pm3.58,42.13\pm3.32$ and 40.97 ± 2.69 mg/dl o n the other hand, HDL-C remained almost the same in the 9month period in apparently normal group as shown in (Table 5). Overall both ratios Total cholesterol/HDL cholesterol and LDL/HDL cholesterol significantly decreased but there was no significant difference observed when compared to males and females. The kidney function tests like Blood urea, serum creatinine, and serum uric acid levels were assessed in all the subjects controls and hypercholesterolemic subjects. The serum uric acid (normal range 2.3-8.2 mg/dl), serum creatinine (normal ranges 0.5-0.8 mg/dl) levels for both the groups prior to supplementation, post during supplementation supplementation were within the normal range (Table 6). Blood urea ranged from 29.13±4.9 mg/dl, 32.70±5.55

mg/dl (apparently normal group 38.93 ± 5.56 mg/dl, 37.53 ± 3.65 mg/dl) prior to the supplementation of the spice powder and 24.90 ± 3.57 , 24.20 ± 3.26 mg/dl (apparently normal group 38.96 ± 3.76 , 38.23 ± 3.18 mg/dl) which was significant at p<0.05 while supplementing and $23.97\pm2.55-24.13\pm2.75$ (apparently normal groups, $37.27\pm3.58-37\pm4.36$ mg/dl) post supplementation in the hypercholesteraemic spice powder fed subjects which were non-significant

Liver function tests in hypercholesterolemia

Liver function tests were also conducted and presented in (Table 7). Serum bilirubin was found to be nearly the same in both the subjects and was within the normal range in the ensuant three months period prior to the supplementation, during and post supplementation (normal values 0-1.2 mg/dl).

Table 5: Effect of Portulaca *oleracea* spice powder supplementation on the lipid profile levels in hypercholesterolemic subjects.

Period supplementation in months	LDL-C (mg/dl)	HDL-C (mg/dl)	VLDL-C (mg/dl)	Triglycerides (mg/dl)
Pre supplementation				
1	152.83±18.48	31.87±3.2	30.33±1.09	151.67±5.91
	(150.73±9.49)	(34.50±5.40)	(31.33±1.68)	(153.60±8.20)
2	149.43±16.22	33.3±2.93	30.63±1.22	152.33±5.99
	(152.57±9.04)	(29.53±5.0)	(30.62±1.67)	(154.47±8.1)
3	149.57±14.78	34.20±2.9	30.57±0.97	153.43±4.4
	(154.40±9.10)	(28.10±4.15)	(30.73±1.57)	(156.10±7.96)
During supplementation				
1	108.20±9.26*	47.50±3.0*	28.33±1.49*	141.87±7.66*
	(155.33±6.72)	(28.87±2.6)	(30.10±1.47)	(158.0±7.52)
2	97.33±5.97*	51.53±3.46*	27.10±1.12*	135.67±5.60*
	(156.73±6.82)	(30.83±2.06)	(29.90±1.68)	(159.47±8.43)
3	88.13±8.8*	53.77±2.32*	26.23±1.16*	131.10±5.65*
	(158.30±6.67)	(30.50±3.62)	(30.03±1.09)	(159.77±6.21)
Post supplementation				
1	120.7±10.89*	44.0±3.58*	25.77±1.13*	128.83±5.55*
	(159.97±6.58)	(30.03±3.16)	(29.73±1.38)	(160.80±6.75)
2	131.47±9.65*	42.13±3.32*	26.33±0.92*	131.93±5.05*
	(161.0±6.65)	(30.83±2.67)	(29.77±1.27)	(160.77±6.53)
3	134.53±9.56*	40.97±2.69*	26.80±0.99*	134.37±4.86*
	(162.8±5.44)	(30.83±3.0)	(30.07±1.20)	(161.67±5.43)

^{*}Significant at 0.05% level (p<0.05).

Table 6: Effect of *Portulaca oleracea* (purslane) spice powder supplementation on blood urea, S. creatinine and S. uric acid levels in hypercholesterolemic subjects.

Period supplementation in months	Blood Urea (mg/dl)	S. creatinine (mg/dl)	S. Uric acid (mg/dl)
Pre supplementation			
1	29.13±4.92 (38.93±5.56)	0.70±0.10 (0.76±0.12)	4.83±0.67 (5.47±0.53)
2	32.33±5.55 (38.71±4.86)	0.69±0.12 (0.76±0.11)	4.71±0.63 (5.48±0.53)
3	30.5±5.40 (37.53±3.65)	0.69±0.11 (0.77±0.11)	4.64±0.62 (5.53±0.45)
During supplementation			
1	24.90±3.57* (38.96±3.76)	$0.65\pm0.08*(0.78\pm0.08)$	4.31±0.58* (5.49±0.46)
2	24.93±4.06* (37.34±3.23)	0.64±0.077* (0.79±0.093)	4.20±0.53* (5.49±0.45)
3	24.20±3.26* (38.23±3.18)	0.64±0.073* (0.79±0.076)	4.09±0.50* (5.48±0.56)
Post supplementation			
1	23.97±2.55 (28±3.58)	0.64±0.977* (0.81±0.09)	4.15±0.50* (5.51±0.51)
2	24.13±2.59* (38.18±4.07)	0.65±0.072* (0.82±0.09)	4.14±0.51* (5.53±0.54)
3	24.07±2.75* (37.32±4.36)	0.67±0.085* (0.82±0.082)	4.12±0.48* (5.54±0.53)

^{*}Significant at 0.05% level (p<0.05).

Alanine transaminase (ALT) or SGPT were within the normal levels for both the test group subjects and apparently normal group. (normal=0-37 U/l) There was a slight reduction of ALT from 22.44±1.9 U/l to 19.90±0.9 U/l when the spice powder of *Portulaca oleracea* was supplemented.

DISCUSSION

Lifestyle modification is the cornerstone of populationbased strategies for prevention of coronary heart disease and is the first line of therapy in patients with hypercholesterolemia. Ample evidence suggests that polyunsaturated fatty acids and monounsaturated fatty acids have a similar cholesterol-lowering effect when substituted for saturated fatty acids. $^{26\text{-}28}$ Most studies of fatty acids and blood lipids have been done with fats and oils, hence it is desirable to know the effects of specific foods on risk factors for coronary heart disease. Portulaca oleracea which was rich in omega- 3 fatty acids, also has high levels of γ -linolenic acid, fiber and polyphenols. as seen earlier and studied by several investigators, it was further chosen for this study. It was observed that there was 22.7 to 39.38% reduction in serum cholesterol levels of hypercholesterolemic subjects after supplementation of Portulaca oleracea spice powder in the test group.

Table 7: Effect of *Portulaca oleracea* spice powder supplementation on LFT levels in hypercholesterolemic subjects.

Period supplementation in months	S. bilirubin (mg/dl)	S. alkaline phosphatase (IU/l)	SGPT (U/l)
Pre supplementation			
1	0.80±0.13 (0.75±0.15)	$8.40\pm1.22~(8.57~\pm015)$	22.93±2.02 (26.13±4.05)
2	0.8±0.37 (0.77±0.155)	8.17 ± 0.155 (8.88 ± 1.21)	22.23±1.90 (26.20±4.04)
3	0.75±0.097 (0.78±0.152)	8.13±1.0 (8.89±0.93)	22.17±1.85 (26.63±3.50)
During supplementation			
1	0.69±0.088 ns (0.79±0.104)	7.63±0.71 ns (8.90±0.69)	20.37±1.35* (26.87±3.06)
2	0.7±0.09 ns (0.79±0.095)	7.60±0.72 ns (8.92±.66)	19.67±0.994* (26.93±4.33)
3	0.7±0.08 ns (0.85±0.09)	7.67±0.54 ns (8.93±0.64)	19.67±0.994* (26.93±4.33)
Post supplementation			
1	0.733±0.084 ns (0.87±0.14)	7.77±0.72 ns (9.17±0.59)	20.33±1.155* (26.95±2.79)
2	0.74±0.10 ns (0.88±0.10)	7.73±0.64 ns (9.23±0.679)	20.60±1.276* (26.95±2.41)
3	$0.75\pm0.08 \text{ ns} (0.89\pm0.098)$	7.63 ± 0.556 ns (9.10 ± 0.548)	20.37±1.15* (26.97±2.66)

^{*}Significant at 0.05% level (p<0.05).

The total cholesterol analysis of a consecutive three-month period after Post supplementation of the Portulaca oleracea spice powder were maintained between 160 mg/dl to 167 mg/dl. Similar obsevations were made by Torsdittor et al, Park et al, Kwon, et al and Lee et al. 5,15,28-30 Lee et al also having studied the effects of Portulaca oleracea powder on the lipid levels of rats found a similar decrease of total cholesterol by 26.2%) Lachhiramka and reported reduction in cholesterol levels with garlic supplementation.^{5,31} Their results showed the significantly decrease of 13% (p<0.001) from mean baseline of 269.30 mg/dl to 233.93 mg/dl at 90th day in serum cholesterol levels among the male patients. In female patients, the decrease was 10% (p<0.001) from mean baseline of 26 0.30mg/dL to 233.90 at 90th day. Hoyos et al showed that increases in total cholesterol and LDL-C induced by a high fat diet was reduced significantly by melatonin administration.³² The melatonin concentration in Portulaca oleracea (purslane) was found to exceed that reported in a number of other fruits and vegetables.33

Melatonin has a variety of important functions including direct free radical scavenging and antiinflammatory properties.34 Hoyos et al showed that increases in total cholesterol and LDL-C induced by a high fat diet was reduced significantly by melatonin administration.³² Portulaca oleracea (purslane) has a positive effect on HDL cholesterol and the potential effect of Portulaca oleracea (purslane) on HDL cholesterol may be attributed to polyunsaturated fatty acids content in Portulaca oleracea (purslane). Results are agreed with Feoli et al who stated that the increase in HDL-C or HTR ratio is one of the most important criteria of anti-hypercholesterolemic agent.³⁵ The decrease of plasma cholesterol by administration of spice powder was ascribed to the decrease of both free and esterified cholesterol. The triglycerides hypercholesterolemic subjects during supplementation of three months was seen to decline vs control though there was again a slow rise in the LDL values after the three month period of post supplementation which could be attributed to melatonin administration found in Portulaca

oleracea (Purslane) which was supported by Simopouloes et al, Rodriguez et al and Hoyos et al.³²⁻³⁵ All the kidney function parameters blood urea, serum creatinine and serum uric acid levels decreased but were within the normal range in both test and normal subjects. Similar observations were made for liver function tests.

Limitations

Limitations of were; the study subjects who were screened for hyper cholesterolemia also suffered other co morbidities and were consuming oral medications. The impact and interference of the oral medications on the supplementation of the spice powder was not taken into consideration.

CONCLUSION

The present study concludes that *Portulaca oleracea* (Purslane) is a helpful plant in prevention of development of hyperlipidemia, fatty liver, etc. through preventing oxidative stress and chronic inflammation, improvement of fat metabolism, decreasing triglycerides, LDL, and total cholesterol, regulating the levels of liver enzymes (transaminases). The study results indicated that the spice powder was rich in polyunsaturated fatty acids had a strong hypolipidemic, hypotriglyceridemic and hypocholesterolemic effects with a reduction of plasma total cholesterol, LDL-C levels and an increase in HDL-C levels in hyper lipidemic subjects.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

 Cardiovascular disease. Available at: https://www.who.int/news-room/fact-sheets/detail/

- cardiovasculardiseases-(cvds)l. Accessed on 20 February 2023.
- Rashed AN, Afifi FU, Disi AM. Simple evaluation of the wound healing activity of a crude extract of Portulacaoleracea L. (growing in Jordan) in Mus musculusJVI-1. J Ethnopharmacol. 2003;88:131-6.
- 3. Yazici I, Turkan I, Sekmen AH, Demiral T. Salinity tolerance of purslane (Portulacaoleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Env Exp Bot. 2007;61:49-57.
- Lim YY, Quah EPL. Antioxidant properties of different cultivars of Portulacaoleracea. Food Chem. 2007;103:734-40.
- Lee SJ, Shin JH, Kang MJ. Effects of Portulacaolerecea powder on lipid levels of rats fed a hypercholesterolemia inducing diet. Food Chem. 2011; 16:202-9.
- 6. Xu X, Yu L, Chen G. Determination of flavonoids in Portulacaoleracea L. by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal. 2006;41:493-9.
- 7. Simopoulos AP Kifer RR, Martin RE, Health Effects of Polyunsaturated Fatty Acids in Seafoods. Orlando, FL: Academic Press; 1986.
- 8. Simopoulos AP, Norman HA, Gillaspy JE. Purslane in human nutrition and its potential for world agriculture. World Rev Nutr Diet. 1995;77:47-74.
- Oliveira I, Valentão P, Lopes R, Andrade PB, Bento A, Pereira JA. Phytochemical characterization and radical scavenging activity of Portulacaoleracea L. Microchem J. 2009;92:129-34.
- Kim AR, Lee JJ, Lee YM, Jung HO, Lee MY. Cholesterol-lowering and anti- obesity effects of Polymniasonchifolia Poepp & Endl powder in rats fed a highfat-high cholesterol diet. J Korean Soc Food Sci Nutr. 2010;39:210-8.
- 11. Harnafi H, Aziz M, Amrani S. Sweet basil (Ocimumbasilicum L.) improves lipid metabolism in hypercholesterolemic rats. Food Chem. 2009;4:81-6.
- 12. Shin MK, Kim DH, Han SH. Effects of dried tea leaf powder of serum on lipid concentrations in rats fed high fat. Korean J Food Culture. 2003;18:226-34.
- 13. Won HR, Kim SH. Antihyperlipidemic effect of diet containing Portulacaoleracea L. ethanol extract in high fat diet-induced obese mice. J Korean Soc Food Sci Nutr. 2011;40:538-43.
- 14. Kim SH, Won HR. Effect of Portulacaoleracea Linne ethanol extract on lipid metabolism in rats fed high fat diet. J Life Nat Sci. 2010;17:51-60.
- 15. Kwon DK, Song YJ. Effect of swimming exercise and Portuluca oleraceae supplementation on metabolic parameters and immune function in fed a high-fat diet. Kor J Exer Nutr. 2010;14:23-9.
- Allian C, Poon L, Richmond W, Fu P. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20:470-5.
- 17. Pisani T, Gebski CP, Leary ET. Accurate Dirrect determination of Low-density lipoprotein cholesterol using an immune separation agent and enzymatic

- cholesterol assays. Arch Pathol Lab Med. 1995;4: 1119-27.
- 18. Shepherd J, Packard CJ, Grundy SM. Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J Lipid Res. 1990;21(1):91-9.
- 19. Sugiuchi H, Uji Y, Okabe H, Irie T. Direct measurement of high density lipoprotein cholesterol in serum with polyethylene Glycol-modified enzymes and sulphated alpha cyclodextrin. Clin Chem. 1995; 41(5):717-23.
- Fabiny Dl, Ertingshahsen G. Automated reaction rate method for determination of serum creatinine with centrifichem. Clini Chem. 1971:17:696-700.
- Fauwett JK, Scott JEA. Rapid and precise method for the determination of urea. J Clin Pathol. 1960:13:156-9.
- 22. Kageyama N. A direct calorimetric determination of uric acd in serum and urine with uricase catalase system. Clin Chim Acta. 1971;31:421-6.
- 23. Malloy HT and Evelyn KA. The determination of bilirubin with the photoelectric colorimeter. J Biol Chem. 1973;119:481-90.
- 24. Empfehlungen D, Gessels C. Standard Methode Zur B Esstimmug der Aktivitatderal kalischen Phosphatase. Klin Chem. 1972;10:191.
- 25. Berg MHU, Horder M, Rej R. Approved Recommendation on IFCC methods for te measurement of catalytic concentration of enzymes Part 3. J Cli Chem Clin Biochem. 1985;24;481-9.
- 26. Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb. 1992;12:911-9.
- 27. Yu S, Derr J, Etherton TD, Kris-Etherton PM. Plasma cholesterol-predictive equations demonstrate that stearic acid is neutral and monounsaturated fatty acids are hypocholesterolemic. Am J Clin Nutr. 1995;61: 1129-39.
- 28. Clarke R, Frost C, Collins R, Appleby P, Peto R. Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies. BMJ. 1997; 314:112-7.
- 29. Torsdottir I, Alpsten M, Holm G, Sandberg AS, T lli J. A small dose of soluble alginate-fiber affects postgrandialglycemia and gastric emptying in humans with diabetes. J Nutr. 1991;121:795-9.
- 30. Park BS Effect of dietary γ-linolenic acid on plasmalipid metabolism in rats. J Korean Oil Chemists Soc. 2002;19:181-8.
- 31. Lachhiramka P, Preety L, Sujay P. Cholesterol lowering property of garlic (Allium sativum) on patients with hypercholesterolemia. Int J Med Sci Pubic Health. 2016;5(11):2249-51.
- 32. Hoyos M, Guerrero R, Cano J, Olivan F, Fabiani A, Perganeda G, et al. Serum cholesterol and lipidperoxidation are decreased bymelatonin in diet induced hypercholesterolemicrats. J Pineal Res. 2000; 28:150-5.

- 33. Simopoulos A, Tan D, Manchester L, Reiter R. A plant source of omega -3 fattyacids and melatonin. J Pineal Res. 2005;39:331-2.
- 34. Rodriguez C, Mayo JC, Sainz RM. Regulation of antioxidant enzymes: A significant role for melatonin. J Pineal Res. 2004;36:1-9.
- 35. Feoli A, Roehrig C, Rotta L. Serum and liver lipids in rats and chiks fed with diets containing different oils. Basic Nutrit Investig. 2003;19:789-93.

Cite this article as: Tarkergari S, Waghray K, Gulla S. Effect of supplementation of Purslane-*Portulaca oleracea* in hypercholesterolemic subjects. Int J Community Med Public Health 2023;10:3797-804.