Original Research Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20233084

Guardian willingness to vaccinate adolescent daughters against human papillomavirus for cervical cancer prevention in hard-to-reach communities in Mandera County, Kenya

Ifrah S. Mohamed^{1*}, Joseph M. Muchiri¹ Francis W. Makokha²

Received: 18 July 2023 Revised: 18 September 2023 Accepted: 20 September 2023

*Correspondence: Ifrah S. Mohamed,

E-mail: ifrahmohamed20979@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Cervical cancer is the fourth most frequent disease in women, and in 2020, there was an estimated 604,127 new cases and 342,831 fatalities worldwide. Despite the fact that cervical cancer can be easily treated if detected early, Sub-Saharan Africa suffers the greatest incidence of cervical cancer morbidity and mortality. The purpose of this study was to ascertain parents' readiness to protect teenage girls from Human Papillomavirus.

Methods: The study used a cross-sectional descriptive strategy conducted among guardians of adolescent girls in rural area in Mandera. A simple random sampling technique was adopted and data was collected through key informant interviews, focus group discussions, and pretested interviewer-administered questionnaires.

Results: The study's findings demonstrated that while parental understanding of the HPV vaccine was low in our study area, parental awareness was high. This resulted in low parental acceptance of the HPV vaccine, which in turn resulted in low uptake. The study participants' degree of vaccination acceptance was low (30%), with the majority showing hesitation (54%). Socio-cultural factors and religion were identified as the main barriers to HPV vaccine acceptance among the participants.

Conclusions: The findings of our study demonstrate that although guardians in the research area had a high level of awareness of the HPV vaccine, there was poor uptake of the vaccine due to low knowledge and sociocultural reasons. Despite the fact that these services were both ample and accessible.

Keywords: HPV vaccine, Cervical cancer, Hard-to-reach communities

INTRODUCTION

Estimates from GLOBOCAN for 2020 showed that 604,000 cases were newly diagnosed and 342,000 reported deaths worldwide due to cancer of the cervix, in Africa, around 372.2 M females under the age of 15 years were at risk of contracting cervical cancer in which 119,284 cases were diagnosed yearly with a mortality rate of 68.5 % representing 81,687 deaths. GLOBOCAN statistics estimates for Asempha 2021 stated that there were an estimation of cases annually and 3,211 deaths in Kenya,

this represented 12.4 %. According to Karanja et al it was reported that HPV vaccination uptake in Kenya was at 33%, for the first dose, (this had a slight increase from 25% in 2019) while the second dose was reported to have a drop at 16%.² Geographical differences in cervical cancer prevalence were noted; in SSA, Guinea had the highest rates (48%) and Mozambique had the lowest rates (41%). By 2030, 443,000 women would have died from cervical cancer worldwide, (WHO). With Sub-Saharan Africa and low- and middle-income countries (LMICs) expecting the highest percentage of deaths (98%) Lekoane 2019.³

¹Department of Community Health, Epidemiology and Biostatistics, College of Health Sciences, Mount Kenya University, Nairobi, Kenya

²Department of Research and Innovation, Mount Kenya University, Nairobi, Kenya

Human Papillomavirus (HPV) was strongly associated with cervical cancer in Kenya, where it accounted for 12.4% of cases per year, with an estimated 5,236 diagnosed cases and roughly 3,211 (11.9%) deaths associated with those cases.⁴ and the infection usually happens as a result of sexual activity. Estimates from the Ministry of Health, Kenya (MOHK) GLOBOCAN 2020 indicates that 5236 new cases and 3211 deaths from cervical cancer occur each year, affecting 16.2 million women (females age 15 and older) who are at risk. Center for HPV Information 2021.⁵

METHODS

This study was a community based cross-sectional study design, among guardians of adolescent girls in Mandera East Sub County, in Mandera, Kenya. The study was conducted for a period of 3 months from December 2022 to February 2023. The sample size was 278, calculated through the fishers' formula.

Inclusion criteria

Parents or guardians of teenage girls aged 9-14 years and who have lived in Mandera East Sub- County for at least six months prior to the study's start and gave their consent for participation in the survey were included.

Exclusion criteria

Exclusion criteria were; A parent/guardian of a girl child aged 9-14 years but who do not meet the residence criteria. Having been a resident in the sub-county for less than six months and parent/guardians without girls in the target age category.

RESULTS

Demographic details

Majority of the respondents 189 (68.0%) were married. A chi square test to determine if there existed a statistical difference regarding acceptability of HPV vaccine across marital status was not significant (p=0.4). Thus, no relationship between marital status and willingness to take up HPV vaccine. Attendees at the primary level of education were 16 (6.4%), those at the secondary level were 18 (6.5%), those with zero to no education were 13 (4.7%), those with incomplete secondary education were 101 (36.3%), and those with tertiary education were 130 (46.8%). Most respondents 148 (53.2%) had completed their secondary and/or tertiary education. In order to determine whether parental acceptance of HPV changed according to educational level, a chi square test yielded a significant result at (p=0.00). Poor education resulted to inadequate knowledge of HPV, cervical cancer, and the necessity to immunize girls in their adolescent years. Respondents that had 1 to 3 children, 149 (53.65), those that had 4 to 5 children 97 (34.9%). Chi square test to determine if there existed a statistical significance between respondents with low parity and high parity returned a positive result p=0.00. These findings were similar to another study in Sub- Saharan Africa that associated parity with utilization of ANC services, Okendo, 2019.⁶ The study sought to determine the socio demographic characteristics of the respondents. The (Table 1) shows the distribution of the socio demographic factors.

Table 1: Social demographic characteristics of the respondents.

Parameters	N	0/0
Age category (years)		
21-25	32	11.5
26-30	10	3.6
31-35	163	58.6
36-40	49	17.6
Above 41	24	8.6
Total	278	100.0
Religion		
Catholic	39	14.0
Protestant	40	14.4
Muslim	199	71.6
Total	278	100.0
Education		
Have never attended school	13	4.7
Attained primary education level	16	5.8
Did not complete secondary education	101	36.3
level	101	30.3
Attained secondary education level	18	2.9
Attained post-secondary education	130	50.4
level	130	
Total	278	100.0
Marital status		
Married	189	68.0
Never married	48	17.3
Divorced	28	10.1
Separated	13	4.7
Total	278	100.0
Pregnancy		
No	19	6.8
Yes	259	93.2
Total	278	100.0
No. respondents children		
1	149	53.6
4-5	97	34.9
Above	32	11.5
Total	278	100.0

Knowledge on cervical cancer and cervical screening

As shown in (Figure 1), there was a high level of awareness of cervical cancer among the respondents. High levels of usage of the HPV vaccine are anticipated to be correlated with high levels of awareness. High levels of awareness in this situation, however, did not correspond to respondents' acceptance of the HPV vaccine. Many studies have pointed at the correlation between the awareness and knowledge, and utilization of cervical cancer services.

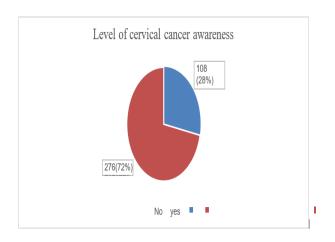


Figure 1: Level of cancer awareness among the respondents.

Acceptability of HPV vaccine among guardians

As it can be seen in the pie chart above, the level of HPV acceptability among the respondents is very low.

Approximately 62% of the respondents do not know about it or they do not plainly accept it on their children from qualitative data collected, various explanations were given on this. This included people's religion and culture. A logistic regression was performed to ascertain the effects of religion, education, knowledge on cervical cancer and occupation on the likelihood that participants will allow their children to take up HPV vaccine. The findings were as indicated in the (Table 3). The logistic regression model was statistically significant, $\chi 2$ (4)=120.6, p<0.0005. The model explained 48.3% (Nagelkerke R2) of the variance on guardian willingness to allow their children to take up HPV vaccine, and correctly classified 86.6.0% of cases.

Binary logistic regression model

Variable(s) entered on step 1: My religion allows children to get HPV vaccination, my culture allows children to get HPV vaccination, it is socially acceptable to give young girls HPV vaccination, my occupation is not a hindrance to HPV vaccination for my daughter.

Table 2: Level of HPV vaccine knowledge among guardians residing in Mandera East Sub-County, Mandera.

Indicators	Yes. N (%)	No, N (%)	Do not know (DNK), N (%)	Mean	SD
Have you heard of HPV?	132 (47.5)	88 (31.6)	36 (12.9)	2.1	1.21
Do you think HPV has a role in cervical cancer development?	128 (46)	11 (39.9)	39 (14)	2	1.11
Does HPV infection have no symptoms?	73 (26)	105 (37.8)	100 (36)	2.1	1.417
Are HPV infections considered sexually transmitted diseases?	72 (25)	124 (44.6)	66 (23.7)	2.3	1.43
Can an abnormal PAP test be brought on by HPV infection?	119 (42.8)	84 (30.2)	75 (26.1)	1.5	1.01
Are human papillomavirus and HIV distinct diseases?	135 (48.6)	54 (19.4)	65 (23.4)	1.1	1.01
Did you know there is an HPV vaccine?	123 (44.2	41 (14.7	71 (25)	2	1.7

In this study, religion was perceived to be one of the barriers to HPV adoption among the respondents. In this study majority of the respondents were Muslims (71.6%), followed by Christians (28.4%). Chi square test on the influence of religion on acceptability was significant X^2 (4, N=278) =15.297, p=0.004. Muslims were 7.02 times less likely to exhibit willingness to allow their children to take up HPV vaccine. Increasing education level was associated with an increased likelihood of exhibiting willingness to allow their children to take up HPV vaccine. Additionally, it came up in the focus group discussion that religion was a barrier. A study on the impact of religion on adolescent girls conducted in Asia found that parents with strong religious beliefs are more likely to resist HPV vaccination than parents with lesser beliefs Wong et al.⁷ It was also shown in the research we carried out that religion played a key impact in influencing whether or not people took the HPV vaccine because the majority of the participants were Muslims and the majority of them had strong understanding of HPV. It is unnecessary to immunize

teenage girls against the sexually transmitted Human papilloma virus as premarital relationships are absolutely prohibited in Islam, thus people were less inclined to get the HPV vaccine. Our study found that the majority of respondents indicated that their culture permitted them to vaccinate their daughters. 55 (55.6%) stated that their culture did not allow them to vaccinate their daughters, followed by 5 (5.1%), 39 (39.4%), who did not know if their culture permitted vaccination or not. A Chi square test revealed a statistical significance between culture and the acceptability of the HPV vaccination at X2 (4, N=278) =85.627, p=0.00. It was observed that culture had an impact on the acceptance of HPV serum. In terms of social acceptability, this study indicated that more over half of 150 respondents (54%) did not think that giving young girls an HPV vaccination was acceptable in society. While 83 (30%) of the respondents thought that immunizing young girls was socially acceptable, a small 41 (15%) of the respondents were unsure of the answer.

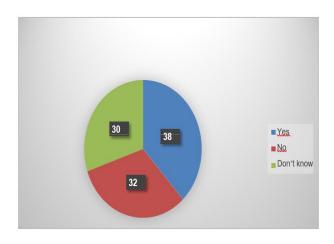


Figure 2: Guardian acceptance of HPV vaccine on their children.

Table 3: Model summary.

Step	-2 Log	Cox & Snell	Nagelkerke R
	likelihood	R Square	Square
1	241.435a	0.352	0.483

^aEstimation terminated at iteration number 5 because parameter estimates changed by less than 0.001.

Health facility based factors influencing HPV vaccine adoption

According to the results 67.7% of respondents indicated that HPV services are accessible. In contrast, 13% disagreed with this assertion, and 19.2% claimed to be unaware of the existence of such services. It was determined that the Chi square test result, X2 (2, N=278) =4.815, p=0.0009, was significant.

Table 4: Binary logistic regression model.

Binary	logistic regression model		SE	Wald	Df	Sig.	Exp(B)
	My religion allows children to get HPV vaccination	0.059	0.158	0.140	1	0.708	1.061
	My culture allows children to get HPV vaccination	0.069	0.024	8.484	1	0.004	1.072
Step 1a	It is socially acceptable to give young girls HPV vaccination	- 0.522	2 0.120 19.02	19.021	1	0.000	0.594
Ia	My occupation is not a hindrance to HPV vaccination for my daughter	- 0.798	0.126	40.157	1	0.000	0.450
	Constant	3.988	0.550	52.582	1	0.000	53.922

Table 5: Social and cultural factors influencing guardian acceptance of HPV vaccines in Mandera East sub county Mandera County.

Indicators	Strongly disagree (%)	Disagree (%)	Undecided (%)	Agree (%)	Strongly agree (%)	Mean	SD
My culture allows children to get HPV vaccination	28.8	30.4	9.3	13.5	19	2.4	1.51
My religion allows children to get HPV vaccination	17.2	25.2	7.4	129.4	20.7	2.0	1.54
It is socially acceptable to give young girls HPV vaccination	18.8	17.7	9.3	26.2	28.0	2.2	1.517
It is agreeable to my partner to have our daughter get HPV vaccination	11.9	25.7	7.4	27.2	27.8	2.3	1.43
My occupation is not a hindrance to HPV vaccination for my daughter	10	12	6	28	34	1.9	1.01

These results show that the services needed to offer HPV vaccines were available. According to the results displayed below, 67.7% of respondents said that healthcare staff are educated about issues relating to the HPV vaccine when it comes to the availability of human resources to provide services, they were also available. Regarding the HPV vaccine's price, the majority of respondents (75.34%) were unaware that it was a cheap option, yet a sizeable portion (33.8%) of respondents disagreed with this statement. 2.5% of people agreed that the HPV vaccine was reasonably priced. Chi square test result: X2 (2, N=278) =89.221, p=0.000.

DISCUSSION

Our study found that guardians, particularly the male spouse Danforth who had the final say in family decisions, have a role to play in their children's lives when it comes to health, Danforth, 2009. Another study by William et al found that men's partners' ability to access screening services was impacted by men's lack of knowledge about cervical cancer. Our study was consistent with another study by Buba et al which found that women who had attained up to secondary education were more likely to use cervical cancer services as compared to women who had

poor education, Buba et al 2019. 10 Poor education levels led to poor knowledge on cervical cancer and HPV as well as the need to give their children/adolescent girls HPV vaccine. These findings imply that the use of healthcare is closely related to education. 11 Poor education levels lead to poor knowledge on cervical cancer and HPV as well as the need to give their children/adolescent girls HPV vaccine. These findings imply that the use of healthcare is closely related to education. The responders' (38%) degree of acceptance of HPV was low. The patriarchal nature of Somalis and the fact that 62% of respondents either did not know about it or did not openly accept it on their children can be ascribed to both. The majority of respondents in this study (71.6%) were Muslims, who have strong religious convictions and who were therefore more likely to reject the HPV vaccine and be reluctant to let their daughters receive it. Religion was perceived by the respondents as one of the barriers to HPV adoption. In terms of social acceptability, this study found that more than half of the respondents (54%) did not think that it is socially acceptable to vaccinate young girls against HPV, while 83 (30%) agreed and a small number (15%) did not know whether it is socially acceptable or not. According to the results, 55% of respondents said their partners would allow their daughters to receive vaccinations, but there were some respondents who said their partners would not allow their daughters to do so (37.6%), and a few participants were unsure whether their partners would allow their daughters to receive vaccinations or not. According to our findings, the services needed to offer HPV vaccines have been covered, and there is an appropriate supply of trained personnel.

CONCLUSION

The findings of our study demonstrate that although guardians in the research area had a high level of awareness of the HPV vaccine, there was poor uptake of the vaccine due to low knowledge and sociocultural reasons. Despite the fact that these services were both ample and accessible.

ACKNOWLEDGEMENTS

Authors would like to thank Dr. Joseph Muchiri and Dr. Francis Makokha for their advice, encouragement, backing, and mentoring, professional input and critique. Authors would like to thank the participants in Mandera County, who provided data for study.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

1. Abdi B, Okal J, Serour G, Temmerman M. "Children are a blessing from God" - a qualitative study exploring the socio-cultural factors influencing contraceptive use in two Muslim communities in Kenya. Reprod Health.

- 2020;17(1):44.
- 2. American Cancer Society. Cancer facts and figures 2020. Atlanta: ACS; 2020.
- Amponsah-Dacosta E, Blose N, Nkwinika VV, Chepkurui V. Human Papillomavirus Vaccination in South Africa: Programmatic Challenges and Opportunities for integration with other adolescent health services? Front Public Health. 2022;10:799984.
- Asempah E, Mboumba Bouassa RS, Prazuck T, Lethu T, Jenabian MA, Meye JF, Bélec L. Cervical cancer in sub-Saharan Africa: a preventable noncommunicable disease. Expert Rev Anti Infect Ther. 2017;15(6):613-27.
- Audu BM, Bukar M, Ibrahim AI, Swende TZ. Awareness and perception of human papilloma virus vaccine among healthcare professionals in Nigeria. J Obstet Gynaecol. 2014;34(8):714-7.
- Bolarinwa OA. Principles and methods of validity and reliability testing of questionnaires used in social and health science researches. Niger Postgrad Med J. 2015; 22(4):195-201.
- Chiang VC, Wong HT, Yeung PC, Choi YK, Fok MS, Mak OI, Wong HY, Wong KH, Wong SY, Wong YS, Wong EY. Attitude, Acceptability and Knowledge of HPV Vaccination among Local University Students in Hong Kong. Int J Environ Res Public Health. 2016; 13(5):486.
- 8. Dereje N, Ashenafi A, Abera A, Melaku E, Yirgashewa K, Yitna M, et al. Knowledge and acceptance of HPV vaccination and its associated factors among parents of daughters in Addis Ababa, Ethiopia: a community-based cross-sectional study. Infect Agent Cancer. 2021;16(1):58.
- 9. Shewaye S, Fasil T, Yoseph Y. Eliminating cervical cancer. Lancet. 2020.
- 10. Gavi H. Overview of COVID-19 Situation in GAVI-Supported Countries and GAVI's Response. J Obstet Gynaecol. 2012;32(3):209-13.
- 11. Karanja-Chege CM. HPV Vaccination in Kenya: The Challenges Faced and Strategies to Increase Uptake. Front Public Health. 2022;10:802947.
- 12. Gliem JA, Gliem RR. Calculating, interpreting, and reporting Cronbach's alpha reliability coefficient for Likert-type scales. Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education. Front Public Health. 2010;23:30-9.
- Hall MT, Simms KT, Lew JB. The projected timeframe until cervical cancer elimination in Australia: a modelling study. Lancet Public Health. 2019;4(1):e19-27
- 14. Li Y, Xu C. Human Papillomavirus-Related Cancers. Adv Exp Med Biol. 2017;1018:23-34.
- 15. Ngune I, Kalembo F, Loessl B, Kivuti-Bitok LW. Biopsychosocial risk factors and knowledge of cervical cancer among young women: A case study from Kenya to inform HPV prevention in Sub-Saharan Africa. PLoS One. 2020;15(8):e0237745.
- 16. Jedy-Agba E, Joko WY, Liu B, Buziba NG, Borok M, Korir A, et al. Trends in cervical cancer incidence in sub-Saharan Africa. Br J Cancer. 2020;123(1):148-54.

- 17. Karanja-Chege CM. HPV Vaccination in Kenya: The Challenges Faced and Strategies to Increase Uptake. Front Public Health. 2022;10:802947.
- 18. Kombe Kombe AJ, Li B, Zahid A, Mengist HM, Bounda GA, Zhou Y, Jin T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front Public Health. 2021;8:552028.
- 19. Lekoane KMB, Kuupiel D, Mashamba-Thompson TP, Ginindza TG. Evidence on the prevalence, incidence, mortality and trends of human papilloma virusassociated cancers in sub-Saharan Africa: systematic scoping review. BMC Cancer. 2019;19(1):563.
- 20. Leung SOA, Akinwunmi B, Elias KM, Feldman S. Educating healthcare providers to increase Human Papillomavirus (HPV) vaccination rates: A Qualitative Systematic Review. Vaccine X. 2019;3:100037.
- 21. Habila MA, Kimaru LJ, Mantina N, Valencia DY, McClelland DJ, Musa J, et al. Community-Engaged Approaches to Cervical Cancer Prevention and Control in Sub-Saharan Africa: A Scoping Review. Front Glob Womens Health. 2021;2:697607.
- 22. Ngune I, Kalembo F, Loessl B, Kivuti-Bitok LW. Biopsychosocial risk factors and knowledge of cervical cancer among young women: A case study from Kenya to inform HPV prevention in Sub-Saharan Africa. PLoS One. 2020 Aug 20;15(8):e0237745.
- Oh NL, Biddell CB, Rhodes BE, Brewer NT. Provider communication and HPV vaccine uptake: A metaanalysis and systematic review. Prev Med. 2021; 148:106554.
- 24. Okedo-Alex IN, Akamike IC, Ezeanosike OB, Uneke CJ. Determinants of antenatal care utilisation in sub-Saharan Africa: a systematic review. BMJ Open. 2019;9(10):e031890.
- 25. Perlman S, Wamai RG, Bain PA, Welty T, Welty E, Ogembo JG. Knowledge and awareness of HPV vaccine and acceptability to vaccinate in sub-Saharan Africa: a systematic review. PLoS One. 2014;9(3): e90912.
- 26. Toh ZQ, Russell FM, Garland SM, Mulholland EK, Patton G, Licciardi PV. Human Papillomavirus Vaccination After COVID-19. JNCI Cancer Spectr. 2021; 5(2):11.
- 27. Torjesen I. HPV vaccine: high coverage could eradicate cervical cancer within decades, say researchers. Br Med J. 2016;23:365.
- 28. Progress and challenges with achieving universal immunization coverage. Available at: https://www.who.int/. Accessed on 20 February 2023.
- 29. Venturas C, Umeh K. Health professional feedback on HPV vaccination roll-out in a developing country.

- Vaccine. 2017;35(15):1886-91.
- 30. Vermandere H, Naanyu V, Mabeya H, Vanden Broeck D, Michielsen K, Degomme O. Determinants of acceptance and subsequent uptake of the HPV vaccine in a cohort in Eldoret, Kenya. PLoS One. 2014; 9(10):e109353.
- 31. WHO Global strategy to eliminate cervical cancer article. Available at: https://www.who.int/. Accessed on 20 February 2023.
- 32. Zhelyazkova A, Kim S, Klein M, Prueckner S, Horster S, Kressirer P, et al. COVID-19 Vaccination Intent, Barriers and Facilitators in Healthcare Workers: Insights from a Cross-Sectional Study on 2500 Employees at LMU University Hospital in Munich, Germany. Vaccines (Basel). 2022;10(8):1231.
- 33. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, Bray F. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191-203.
- 34. Becker-Dreps S, Otieno WA, Brewer NT, Agot K, Smith JS. HPV vaccine acceptability among Kenyan women. Vaccine. 2010;28(31):4864-7.
- 35. Bolarinwa OA. Principles and methods of validity and reliability testing of questionnaires used in social and health science researches. Niger Postgrad Med J. 2015;22(4):195-201.
- 36. Bruni L, Saura-Lázaro A, Montoliu A, Brotons M, Alemany L, Diallo MS, et al. HPV vaccination introduction worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010-2019. Prev Med. 2021 Mar;144:106399.
- 37. Bangura JB, Xiao S, Qiu D, Ouyang F, Chen L. Barriers to childhood immunization in sub-Saharan Africa: A systematic review. BMC Public Health. 2020;20(1):1108.
- 38. Hoque ME. Factors influencing the recommendation of the Human Papillomavirus vaccine by South African doctors working in a tertiary hospital. Afr Health Sci. 2016;16(2):567-75.
- 39. Hussain AN, Alkhenizan A, McWalter P, Qazi N, Alshmassi A, Farooqi S, Abdulkarim A. Attitudes and perceptions towards HPV vaccination among young women in Saudi Arabia. J Family Community Med. 2016;23(3):145-50.

Cite this article as: Mohamed IS, Muchiri JM, Makokha FW. Guardian willingness to vaccinate adolescent daughters against human papillomavirus for cervical cancer prevention in hard-to-reach communities in Mandera County, Kenya. Int J Community Med Public Health 2023;10:3550-5.