Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20232060

The role of micro-endodontics in the management of complex root canal anatomy

Yasser Ali Almhimeed^{1*}, Yaser Ali Aloutaibi¹, Naif Attiah Alharbi¹, Fahad Faisal Althagafi¹, Abdulaziz Saleh Alkarim¹, Muath Muhammad Benten¹, Hatim Mohammed Alhefdi², Faris Gaze Aljiaid³, Areej Saleh Alhawsawi¹

Received: 05 June 2023 Accepted: 21 June 2023

*Correspondence:

Dr. Yasser Ali Almhimeed, E-mail: yalmhimeed@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Micro-endodontics has emerged as a critical component in endodontics, revolutionizing the management of complex root canal anatomy. It utilizes magnification devices, such as dental operating microscopes or loupes, to enhance visualization and identify intricate anatomical details. Micro-endodontics encompasses advanced techniques and technologies that are utilized alongside the principles of conventional endodontics. While both approaches share common goals of cleaning, disinfection, and obturation of the root canal system, micro-endodontics specifically focuses on managing complex root canal anatomy by utilizing specialized tools and techniques to enhance visualization, instrumentation, disinfection, and obturation. Ultrasonic instruments aid in negotiating challenging canal configurations and removing obstructions. Nickel-titanium rotary instruments offer flexibility and durability for efficient cleaning and shaping. Advanced irrigation techniques, such as ultrasonics and laser-activated irrigation, improve disinfection. Innovative obturation techniques ensure the thorough filling of intricate canals. Despite limitations like cost, learning curve, treatment time, and access limitations, micro-endodontics has a promising future. Technological advancements, minimally invasive approaches, biomaterials, biotechnology, artificial intelligence, robotics, and interdisciplinary collaboration will further enhance micro-endodontics, improving treatment outcomes and expanding its scope in complex root canal anatomy.

Keywords: Micro-endodontics, Complex root canal anatomy, Visualization, Ultrasonic instruments, Nickel-titanium rotary instruments

INTRODUCTION

Micro-endodontics has emerged as a critical component in the field of endodontics, revolutionizing the management of complex root canal anatomy. Root canal treatment aims to eradicate infection, preserve the natural tooth, and restore oral health. However, the success of this procedure heavily relies on thorough cleaning, disinfection, and obturation of the intricate root canal system. Complex root canal anatomy, characterized by variations such as extra canals, C-shaped canals, isthmuses, and apical deltas, poses significant challenges for traditional endodontic approaches. This is where micro-endodontics plays a pivotal role, employing advanced techniques, instruments, and magnification devices to overcome these challenges and achieve successful treatment outcomes.

Micro-endodontics leverages the use of magnification devices, such as dental operating microscopes or dental

¹King Abdulaziz University Dental Hospital, Jeddah, Saudi Arabia

²Department of Endodontics, Muhayil General Hospital, Muhayil Assir, Saudi Arabia

³Prince Mansour Military Hospital, Taif, Saudi Arabia

loupes, to enhance visualization and provide a detailed view of the root canal system.² These devices offer high levels of magnification and illumination, enabling endodontists to identify intricate anatomical details that may be missed by the naked eye. The enhanced visualization aids in locating additional canals, identifying lateral canals, and accurately assessing the complexity of the root canal system.³

In addition to magnification, micro-endodontics utilizes ultrasonic instruments, which play a crucial role in managing complex root canal anatomy.⁴ Ultrasonics assist in the localization and negotiation of challenging canal configurations, allowing for better access and improved instrumentation. The ultrasonic tips can effectively remove obstructions, such as calcified canals or separated instruments, enabling endodontists to navigate through complex anatomy and thoroughly clean the root canal system.⁵

Micro-endodontics also relies on the utilization of nickeltitanium (NiTi) rotary instruments. These instruments exhibit desirable characteristics, including flexibility and resistance to cyclic fatigue, which are particularly advantageous in negotiating curved canals and complex anatomical variations. The flexibility of NiTi instruments allows for better adaptation to the intricate canal shapes, ensuring optimal cleaning and shaping.

Effective irrigation and disinfection are paramount in root canal treatment, and micro-endodontics employs advanced techniques to address this aspect. Thorough irrigation of the root canal system is achieved using irrigants such as sodium hypochlorite. However, in complex anatomical situations, conventional irrigation alone may not be sufficient to reach and cleanse all areas of the root canal system. Micro-endodontics incorporates activation techniques, such as ultrasonics and laser-activated irrigation, to enhance the effectiveness of irrigants. These activation methods improve fluid dynamics and facilitate the removal of debris, dissolution of organic matter, and eradication of bacteria from challenging canal configurations.

Proper obturation of the root canal system is crucial for successful treatment outcomes, and micro-endodontics incorporates advanced obturation techniques to address the complexity of root canal anatomy. Techniques such as warm vertical condensation, thermoplasticized guttapercha, and carrier-based obturation systems ensure the three-dimensional filling of intricate canal configurations. By utilizing these techniques, micro-endodontics helps to create a hermetic seal, preventing reinfection and promoting long-term success. 10

METHODS

This study is based on a comprehensive literature search conducted on May 22, 2023, in the Medline and Cochrane databases, utilizing the medical topic headings (MeSH)

and a combination of all available related terms, according to the database. To prevent missing any possible research, a manual search for publications was conducted through Google Scholar, using the reference lists of the previously listed papers as a starting point. We looked for valuable information in papers that discussed the role of micro-endodontics in the management of complex root canal anatomy. There were no restrictions on date, language, participant age, or type of publication.

DISCUSSION

Micro-endodontics encompasses advanced techniques and technologies that are utilized alongside the principles of conventional endodontics. While both approaches share common goals of cleaning, disinfection, and obturation of the root canal system, micro-endodontics specifically focuses on managing complex root canal anatomy by utilizing specialized tools and techniques to enhance visualization, instrumentation, disinfection, and obturation.

Enhanced visualization

Micro-endodontics relies on magnification devices such as dental operating microscopes or dental loupes to provide enhanced visualization of the root canal system. ¹¹ These devices offer high levels of magnification, typically ranging from 2x to 25x, and provide intense illumination. The improved visualization allows endodontists to identify intricate anatomical details that may be missed by the naked eye. With the aid of dental operating microscopes or loupes, endodontists can locate additional canals, identify lateral canals, and accurately assess the complexity of the root canal system. ¹² This comprehensive visualization aids in the thorough cleaning, disinfection, and shaping of the root canal system, ensuring optimal treatment outcomes.

Instrumentation

Micro-endodontics incorporates the use of ultrasonic instruments, which play a crucial role in managing complex root canal anatomy. Ultrasonic instruments generate mechanical vibrations at ultrasonic frequencies and are used in conjunction with irrigants to facilitate various aspects of root canal treatment.¹³ One of the key applications of ultrasonics is the localization and negotiation of challenging canal configurations. In cases where root canals are calcified or exhibit complex anatomy, traditional endodontic instruments may struggle to negotiate the canals adequately. Ultrasonic tips, which are thin and flexible, can be used to gradually remove the calcifications or obstructions, allowing for better access and improved instrumentation.¹⁴ Ultrasonic instruments are also valuable in the removal of separated instruments within the root canal. Separated instruments pose a significant challenge as they can obstruct the cleaning and shaping procedures. The use of ultrasonic tips allows endodontists to carefully fragment and remove the separated instrument, minimizing the risk of iatrogenic damage and facilitating the completion of treatment.¹⁵ Moreover, ultrasonics can enhance the effectiveness of irrigation. Irrigants play a crucial role in root canal disinfection by flushing out debris, dissolving organic matter, and eliminating bacteria. In complex root canal anatomy, conventional irrigation techniques may not reach all areas of the root canal system. Ultrasonics, when used with irrigants, create acoustic streaming and cavitation effects that improve fluid dynamics and enhance the penetration of irrigants into complex anatomical configurations.¹⁶ This aids in the removal of bacteria and debris from challenging areas, leading to improved disinfection.

Cleaning and shaping

Micro-endodontics utilizes nickel-titanium (NiTi) rotary instruments for the cleaning and shaping of the root canal system. NiTi rotary instruments have revolutionized endodontics due to their unique properties, including flexibility and resistance to cyclic fatigue. The flexibility of NiTi rotary instruments allows for better adaptation to the intricate anatomy of complex root canal systems.¹⁷ These instruments can negotiate curved canals with ease, following the natural curvature of the canal and minimizing the risk of procedural errors. This flexibility enables endodontists to effectively clean and shape the root canal system, ensuring thorough debridement and disinfection. NiTi rotary instruments also exhibit high resistance to cyclic fatigue, which is the leading cause of instrument fracture during root canal treatment.¹⁸ In complex root canal anatomy, the presence of intricate canal configurations can increase the likelihood of cyclic fatigue.¹⁹ However, NiTi rotary instruments offer superior durability, reducing the risk of instrument separation and procedural complications. This allows for efficient and safe cleaning and shaping procedures.

Irrigation and disinfection

Thorough irrigation and disinfection are essential in root canal treatment, particularly in cases involving complex root canal anatomy. Micro-endodontics employs advanced techniques to address the challenges posed by intricate canal configurations.²⁰ Conventional endodontic irrigations typically involves the use of irrigants such as sodium hypochlorite (NaOCl) to flush out debris and disinfect the root canal system. While effective in routine cases, conventional irrigation methods may insufficient to achieve optimal disinfection in complex root canal anatomy. Micro-endodontics incorporates activation techniques to enhance irrigation and disinfection.²¹ Ultrasonic activation generates acoustic streaming and cavitation effects that improve fluid dynamics and facilitate the penetration of irrigants into challenging areas.²² This aids in the removal of bacteria, debris, and biofilm, leading to improved disinfection of the root canal system. In addition to ultrasonic activation, laser-activated irrigation is another advanced technique used in micro-endodontics. Laser energy delivered through fiber optics activates the irrigant, enhancing its antimicrobial effects. Laser-activated irrigation can reach areas that are difficult to access with conventional methods, further improving disinfection in complex root canal anatomy. Moreover, the use of chelating agents such as ethylenediaminetetraacetic acid (EDTA) is common in micro-endodontics. EDTA aids in the removal of the smear layer, which consists of inorganic and organic debris and can cover the dentinal walls, inhibiting proper disinfection. By removing the smear layer, EDTA exposes the dentinal tubules, facilitating better penetration of disinfecting agents and improving the overall disinfection of the root canal system.

Obturation techniques

Proper obturation of the root canal system is crucial for the long-term success of endodontic treatment. Microendodontics employs advanced techniques to address the complexity of root canal anatomy and achieve optimal obturation.²¹ One of the techniques commonly used in micro-endodontics is warm vertical condensation. This technique involves the use of heated pluggers and thermoplasticized gutta-percha to fill the root canal system. The heated pluggers aid in the compaction and adaptation of the gutta-percha, ensuring a threedimensional seal and minimizing the risk of voids in complex root canal anatomy.²⁵ Thermoplasticized guttapercha techniques, such as the continuous wave technique or the modified single-cone technique, are also utilized in micro-endodontics. These techniques involve the use of heat to soften and compact gutta-percha, facilitating its flow into intricate canal configurations and achieving a more precise and complete obturation. Additionally, carrier-based obturation systems, such as the use of prefitted gutta-percha cones or bioceramic sealers, are gaining popularity in micro-endodontics.²⁶ These systems allow for controlled and precise delivery of obturating materials into complex root canal anatomy, ensuring thorough filling and sealing of the root canal system.

Treatment outcome predictability

The implementation of micro-endodontics in the management of complex root canal anatomy has significantly improved treatment outcome predictability {Ling, 2006 #3224}. By utilizing advanced techniques, and magnification devices, instruments. endodontics addresses the challenges posed by intricate canal configurations. The enhanced visualization provided by dental operating microscopes or loupes enables endodontists to identify and treat additional canals, lateral canals, and anatomical irregularities, leading to a more comprehensive and successful treatment outcome.²⁵ The use of ultrasonic instruments aids in the negotiation of challenging canal configurations and the removal of obstructions, facilitating better access and improved instrumentation. This results in thorough cleaning and shaping, reducing the risk of untreated or missed canal systems that can contribute to treatment failure. Advanced irrigation techniques, such as ultrasonic and laser-activated irrigation, improve disinfection by enhancing the penetration and distribution of irrigants into complex anatomical configurations. This ensures the removal of bacteria and debris from challenging areas, leading to improved treatment outcomes. Furthermore, the utilization of NiTi rotary instruments provides flexibility and resistance to cyclic fatigue, allowing for efficient and safe cleaning and shaping procedures. This reduces the risk of procedural errors, instrument separation, and procedural complications, contributing to more predictable treatment outcomes.

While micro-endodontics has brought significant advancements to the management of complex root canal anatomy, it is important to acknowledge some of its current shortcomings.

Cost and equipment requirements

Implementing micro-endodontics requires substantial investment in specialized equipment such as dental operating microscopes or loupes. ²⁵ These devices can be costly, making it a significant financial commitment for dental practices. Additionally, the use of advanced techniques and instruments may require additional training and expertise, further adding to the cost.

Learning curve and skill acquisition

Proficiency in micro-endodontics requires a learning curve and skill acquisition. Dental professionals need to undergo specific training to effectively use magnification devices and master advanced techniques. ¹⁰ This can take time and effort, and not all practitioners may have access to adequate training opportunities.

Increased treatment time

Micro-endodontics, with its emphasis on thorough cleaning, disinfection, and precise obturation, may result in increased treatment time compared to conventional endodontics.⁵ The meticulous approach and attention to detail required in micro-endodontics can extend chairside time, which may not be feasible for all patients or dental practices.

Access limitations

While micro-endodontics provides enhanced visualization, there may still be limitations in accessing certain areas of the root canal system, especially in cases with severely calcified canals or anatomical complexities. ²⁵ Despite the use of magnification and ultrasonic instruments, there can be instances where complete access and thorough cleaning become challenging. ²⁸

Despite these limitations, micro-endodontics continues to evolve and holds promising prospects for the future of endodontics.²⁹ Here are some areas that show potential for growth and development.

Technological advancements

As technology continues to advance, micro-endodontics is likely to benefit from further improvements. Advancements in imaging techniques, such as cone-beam computed tomography (CBCT), may provide more detailed three-dimensional visualization of complex root canal anatomy, aiding in accurate diagnosis and treatment planning.²⁹

Minimally invasive approaches

The future of micro-endodontics may focus on developing minimally invasive techniques that preserve more tooth structure while effectively managing complex root canal anatomy.³ This can include the use of laser technology, guided endodontics, and regenerative endodontics to optimize treatment outcomes with minimal invasiveness.

Biomaterials and biotechnology

The field of micro-endodontics can benefit from advancements in biomaterials and biotechnology. 30 The development of innovative materials with enhanced disinfection and sealing properties can contribute to more effective obturation and improved long-term outcomes. Biotechnology advancements, such as stem cell therapy and tissue engineering, may offer new avenues for regenerating damaged or diseased dental pulp tissues. 26

Artificial intelligence and robotics

Integration of artificial intelligence (AI) and robotics in micro-endodontics holds potential for automating certain aspects of the treatment process, improving precision, and reducing procedural errors.²⁹ AI algorithms can assist in image analysis, diagnosis, treatment planning, and outcome prediction, while robotic systems can aid in instrument manipulation and navigation.

Interdisciplinary collaboration

Collaborations between endodontists and other dental specialties can contribute to advancements in microendodontics. Of Shared knowledge and expertise from fields such as periodontology, implantology, and oral and maxillofacial surgery can lead to comprehensive treatment approaches that address complex cases more effectively.

CONCLUSION

Micro-endodontics plays a crucial role in the management of complex root canal anatomy. Through enhanced

visualization, advanced instrumentation, improved irrigation and disinfection techniques, and precise obturation methods, micro-endodontics addresses the challenges posed by intricate canal configurations. By magnification incorporating devices, ultrasonic instruments, NiTi rotary instruments, advanced irrigation techniques, and advanced obturation techniques, microendodontics enhances visualization, instrumentation, disinfection, and obturation. This comprehensive approach allows endodontists to navigate and treat complex root canal anatomy with greater precision and success, improving treatment outcomes and providing patients with a higher chance of retaining their natural dentition. The implementation of micro-endodontics has significantly advanced the field of endodontics, ensuring optimal outcomes even in challenging endodontic cases.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Vertucci FJ. Root canal morphology and its relationship to endodontic procedures. Endodontic topics. 2005;10(1):3-29.
- 2. Fan B, Bian Z, Fan M-W. Endodontic treatment: part III. Micro-endodontics and orascopic endodontics. Zhonghua kou qiang yi xue za zhi= Zhonghua kouqiang yixue zazhi. Chinese Journal of Stomatology. 2006;41(4):246-9.
- 3. Dhingra S, Gundappa M, Bansal R, Agarwal A, Singh D, Sharma SA. Recent concepts in endodontic microsurgery: a review. TMU J Dent. 2014;1(3).
- 4. Ling J, Wei X. Nonsurgical micro-endodontics and its outcome. Shanghai kou Qiang yi xue= Shanghai Journal of Stomatology. 2006;15(1):1-6.
- 5. Torabinejad M. Magnification in endodontics: the use of the operating microscope. ENDODONTIC PRACTICE. 2003:30.
- 6. Walsch H. The hybrid concept of nickel–titanium rotary instrumentation. Dental Clinics. 2004;48(1):183-202.
- 7. Park S-Y, Cheung GS, Yum J, Hur B, Park J-K, Kim H-C. Dynamic torsional resistance of nickel-titanium rotary instruments. Journal of Endodontics. 2010;36(7):1200-4.
- 8. De Moor RJ, Meire M, Goharkhay K, Moritz A, Vanobbergen J. Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs. Journal of Endodontics. 2010;36(9):1580-3.
- 9. Peeters HH. The role of microendodontics in the treatment of difficult cases such as C-shaped orifice of mandibular second molar with 5 canals. Padjadjaran Journal of Dentistry. 2008;20(3).
- 10. Sedani SK, Ikhar AD, Thote AP. The Next Big Thing is Really Big! Magnification in Dentistry. Journal of Evolution of Medical and Dental Sciences. 2021;10(15):1083-8.

- 11. Nemeh AA, Aqrabawi J. Magnification in Endodontics A Literature Review. Smile Dental Journal. 2014;9(2).
- 12. Aqrabawi J, Al-Hadidi A, Zaghlan RA. The Use of Magnification, Loops, and Light Source in Daily Endodontic Practice. J Int Dent Medical Res. 2021;14(1):350-9.
- 13. Mozo S, Llena C, Forner L. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions. Medicina oral, patologia oral y cirugia bucal. 2012;17(3):e512.
- 14. Plotino G, Pameijer CH, Grande NM, Somma F. Ultrasonics in endodontics: a review of the literature. Journal of endodontics. 2007;33(2):81-95.
- 15. McGuigan M, Louca C, Duncan H. Clinical decision-making after endodontic instrument fracture. British Dental Journal. 2013;214(8):395-400.
- 16. Boutsioukis C, Arias-Moliz MT. Present status and future directions–irrigants and irrigation methods. International Endodontic Journal. 2022;55(Suppl 3):588.
- 17. Bergmans L, Van Cleynenbreugel J, Wevers M, Lambrechts P. Mechanical root canal preparation with NiTi rotary instruments: rationale, performance and safety. Am J Dent. 2001;14(5):324-33.
- 18. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2006;102(4):e106-14.
- 19. Pedullà E, La Rosa GRM, Virgillito C, Rapisarda E, Kim H-C, Generali L. Cyclic fatigue resistance of nickel-titanium rotary instruments according to the angle of file access and radius of root canal. Journal of endodontics. 2020;46(3):431-6.
- 20. Natto ZS. A survey of root canal treatment in Saudi Arabia: A pilot study. Oral Health Dent Manag. 2014;13(2):354-8.
- 21. Cantatore G, Berutti E, Castellucci A. Missed anatomy: frequency and clinical impact. Endodontic Topics. 2006;15(1):3-31.
- 22. Plotino G, Cortese T, Grande NM. New technologies to improve root canal disinfection. Brazilian Dental Journal. 2016;27:3-8.
- 23. De Groot S, Verhaagen B, Versluis M, Wu MK, Wesselink P, Van Der Sluis L. Laser-activated irrigation within root canals: cleaning efficacy and flow visualization. International Endodontic Journal. 2009;42(12):1077-83.
- 24. Vasileva RI, Kalin KS. Orthograde Endodontic Retreatment of A Tooth With Four Separated Instruments In One Root Canal-A Case Report. EC Dental Science. 2015;2:411-6.
- 25. Castellucci A. Magnification in endodontics: the use of the operating microscope. Pract Proced Aesthet Dent. 2003;15(5):377-84.
- 26. Pérez-Alfayate R, Mercade M, Algar-Pinilla J, Cisneros-Cabello R, Foschi F, Cohen S. Root canal filling quality comparison of a premixed calcium

- silicate endodontic sealer and different carrier-based obturation systems. Journal of Clinical Medicine. 2021;10(6):1271.
- 27. Clark D, Khademi J. Modern molar endodontic access and directed dentin conservation. Dental Clinics. 2010;54(2):249-273.
- 28. Tehrani A. The Role of the Surgical Operating Microscope in Endodontics. 2007;3(10).
- 29. Haji Z, Arif A, Jamal S, Ghafoor R. Augmented reality in clinical dental training and education. JPMA The Journal of the Pakistan Medical Association. 2021;71(1 (Suppl 1)):S42.
- 30. Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P. Bioceramics in endodontics—a review. Journal of Istanbul University Faculty of Dentistry. 2017;51(3 Suppl 1):S128.

Cite this article as: Almhimeed YA, Aloutaibi YA, Alharbi NA, Althagafi FF, Alkarim AS, Benten MM, et al. The role of micro-endodontics in the management of complex root canal anatomy. Int J Community Med Public Health 2023;10:2609-14.