pISSN 2394-6032 | eISSN 2394-6040

# **Original Research Article**

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20232376

# Clinico-epidemiological profile and complications of hand foot mouth disease among cases attending tertiary care centre in Northern Kerala, India

## Mary Linu\*, Renu Thomas, Jayasree Anandabhavan Kumaran

Department of Community Medicine, Government Medical College, Kannur, Kerala, India

Received: 19 May 2023 Accepted: 07 July 2023

# \*Correspondence:

Dr. Mary Linu,

E-mail: linumary24@gmail.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **ABSTRACT**

**Background:** Hand-Foot-Mouth Disease (HFMD), has suddenly become more prevalent than ever in Kerala and is reported in almost all districts. Earlier studies showed EnteroVirus-A71 to be the causative agent, but frequent outbreaks are also caused by coxsackievirus A6 and A16. In 2022 there was a surge in the HFMD cases being reported to the institution with few cases requiring hospital admission due to complications.

**Methods:** Study was a hospital based descriptive study in Government Medical College, Kannur, Kerala, India among Paediatric cases of HFMD, presented to the institution from April to July, 2022. Data was collected by direct interview using a semi structured questionnaire. It was coded and entered in MS Excel and analysed using SPSS 21.

**Results:** Of the total 50 cases studied, 60% of the cases were in the age group of 1-3 years. Majority (58%) were females, with maximum cases being reported in the month of May. 32% had contact history with 18% being family contacts. Fever (72%), lesions on the hand (86%), foot (92%) and oral cavity (68%) were the most common clinical presentation. Complications developed in 10% of the cases, requiring hospital admission. Most common complication being neurological complication- acute cerebellar ataxia and atypical febrile seizure. A major factor noted among the cases that developed complications was that all were having chronic malnutrition.

**Conclusions:** Even though majority of the cases had uncomplicated course, 10% cases showed complications. Therefore, awareness should be made regarding chances of complications and its risk factors. Assessment of nutritional status should be done in all cases.

Keywords: Complications, Clinico-epidemiological profile, Hand foot mouth disease

## INTRODUCTION

Hand, foot, and mouth disease (HFMD) is common in children under 5 years old. The illness is usually not serious. It spreads quickly at schools and day care centres. It is caused by viruses that belong to the Enterovirus family. Coxsackievirus A16 is typically the most common cause of HFMD. Coxsackievirus A6 can also cause HFMD and the symptoms may be more severe. Enterovirus 71 (EV-A71) has been associated with cases and outbreaks in East and Southeast Asia. Although rare, EV-A71 has been associated with

more severe diseases such as encephalitis (swelling of the brain).<sup>1</sup>

The virus can spread to others through an infected person's nose and throat secretions, such as saliva, drool, or nasal mucus, fluid from blisters or scabs, faeces. People with HFMD are usually most contagious during the first week that they are sick. People can sometimes spread the virus to others for days or weeks after symptoms go away or if they have no symptoms at all. Symptoms of HFMD usually include fever, mouth sores, and skin rash. The rash is commonly found on the hands and feet. Most children have mild symptoms for 7 to 10

days.<sup>2</sup> The prognosis for most patients with hand, foot, and mouth disease is excellent. Most patients recover within a few weeks without any residual sequelae. Many of our literatures on the outbreak have shown recovery of the cases without any complications.

However, some patients may develop serious complications. Persistent stomatitis is associated with painful ulcers. The pain can be severe enough to limit food intake, and dehydration can result, especially in young children.<sup>3</sup> Aseptic meningitis can occur, but this is more common with enterovirus 71. This particular virus is associated with a higher rate of neurological involvement coxsackievirus.3,4 compared to Coxsackievirus can rarely cause interstitial pneumonia, myocarditis, pancreatitis, and pulmonary edema.<sup>5</sup> Some studies indicate that coxsackievirus infections may also be associated with spontaneous abortions.<sup>6</sup>

The prevalence of HFMD also varies with season, weather, countries and other factors. The incidence of HFMD is relatively high in tropical and temperate zones. The majority of HFMD outbreaks are reported in some Asian-Pacific region countries such as China, India, Malaysia. The incidence of HFMD, had obvious seasonal pattern, with a high incidence in May and June. HFMD remains a major challenge to the development of public health.

The first ever epidemic of Hand, foot and mouth disease in India was observed in 2003 in the state of Kerala, after which it has been sporadically seen across India as a mild illness. With increasing incidence of epidemics in India, we can expect more cases as well as more severe infections with life threatening complications in the forthcoming years.<sup>7</sup>

Hand-Foot-Mouth Disease (HFMD), has suddenly become more prevalent than ever in Kerala and is reported in almost all districts. Earlier studies showed EnteroVirus-A71 to be the causative agent, but frequent outbreaks are also caused by coxsackievirus A6 and A16. In 2022 there was a surge in the HFMD cases being reported to the institution with few cases requiring hospital admission due to complications.

Objective of the study was to assess the clinicoepidemiological profile of HFMD cases attending tertiary care centre of northern Kerala and to describe the complications of HFMD cases attending tertiary care centre of northern Kerala.

#### **METHODS**

Study was conducted in a tertiary care center-Government Medical College, Kannur in Northern Kerala, India. It was a hospital based descriptive study. The study population was paediatric cases of HFMD, presented to GMC Kannur from April to July, 2022. Child satisfying the clinical case definition and who were

willing to participate was included in the study. Data was collected by direct interview using a semi structured questionnaire.

### Operational definition

Clinical case definition of HFMD

Any child with a) mouth/tongue ulcer, b) maculopapular rashes and/or vesicles on palms or soles, c) with OR without history of fever.<sup>2</sup>

Data collected was coded and entered in MS Excel and analysed using SPSS 21. Results are expressed in frequencies and percentages.

#### **RESULTS**

#### Demographic profile

A total of 50 pediatric HFMD cases were included in the study, of which 58% (29) were females and 42% (21) were males. The 1-3 years age group had the highest proportion of cases, 60% (30). The mean age of the study population was  $2.3\pm1.8$  years. The minimum age was 1 month and maximum age was 7 years (Figure 1 and 2).

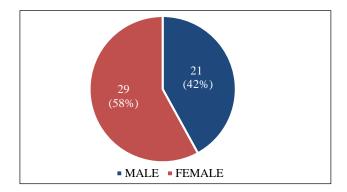



Figure 1: Sex wise distribution of HFMD cases (n=50).

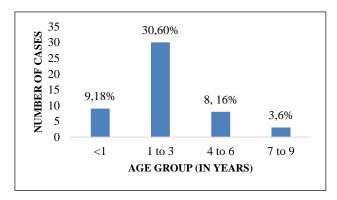



Figure 2: Age wise distribution of HFMD cases (n=50).

Maximum cases occurred in the month of May, 56% (28), followed by 32% (16) cases in the month of June (Figure 3).

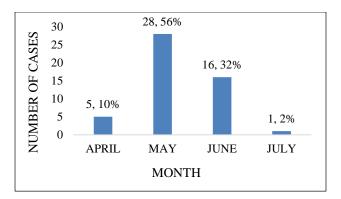



Figure 3: Month wise distribution of HFMD cases (n=50).

# Clinical profile of the HFMD cases

Fever (72%, 36), lesions on the hand (86%, 43), foot (92%, 46) and oral cavity (68%, 34) were the most common clinical presentation. Lesions were also present on the chest, trunk, buttocks and genitals in some cases. Breathlessness, cough and diarrhoea were the other symptoms which the patients had. In 46% (23) cases symptoms lasted for 7 days. 32% (16) had contact history with 18% being family contacts (Figure 4, 5).

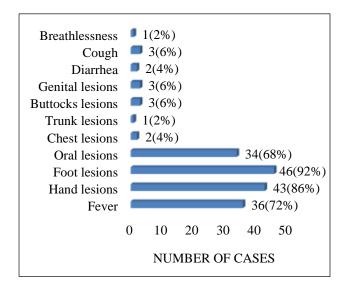



Figure 4: Clinical profile of the HFMD cases (not mutually exclusive).

#### **Complications**

A 10% (5) of the cases developed complications requiring hospital admission. Most common complication being neurological complication- acute cerebellar ataxia and atypical febrile seizure. Others complications were septicaemia and complicated oral lesions. A major factor noted among the cases that developed complications was that all were having chronic malnutrition.

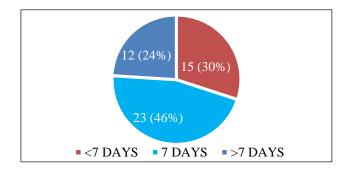



Figure 5: Duration of symptoms (n=50).

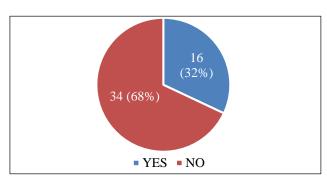



Figure 6: History of contact with HFMD (n=50).

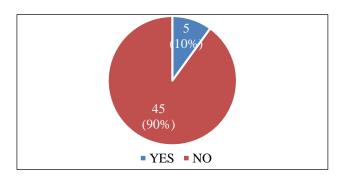



Figure 7: HFMD cases with complications (N=50).

Table 1: Complications developed by the cases and its details.

| Complication                 | Number<br>of cases | Complication developed<br>after how many days of<br>symptom onset | Number of days<br>admitted in<br>hospital | Nutritional<br>status of child |
|------------------------------|--------------------|-------------------------------------------------------------------|-------------------------------------------|--------------------------------|
| Cerebellar ataxia            | 2                  | After 1 week                                                      | 9 days                                    | Grade 1 PEM*                   |
|                              |                    | After 5 days                                                      | 8 days                                    | Grade 2 PEM                    |
| Atypical febrile seizure     | 1                  | After 2 days                                                      | 8 days                                    | Grade 1 stunting               |
| Septicemia secondary to HFMD | 1                  | After 1 week                                                      | 11 days                                   | SAM*                           |
| Complicated oral lesions     | 1                  | After 3 days                                                      | 4 days                                    | Grade 1 stunting               |

\*PEM- Protein Energy Malnutrition, \*SAM- Severe Acute Malnutrition.

Continued.

#### **DISCUSSION**

HFMD, an endemic but highly contagious viral disease among children is emerging as a public health concern with the first outbreak in 2022 at Kollam, Kerala. In this study, Majority (60%) of the cases were in the age group of 1-3 years of age with maximum cases reported in the month of May. The findings of which is consistent to that seen in a study by Ang et al.<sup>8</sup> Even though HFMD affects children and young adults, the lower age findings in this study can be attributed to the weaker immunity and decreased chances of hand hygiene practiced by the children of that age. The peak in the cases in the month of May (56%) is due to the favourable conditions for the reproduction of the viral pathogens.<sup>10</sup> Temperature, humidity, rainfall, and other climatic conditions can promote the reproduction, survival, and transmission of HFMD pathogens to a certain extent, leading to the prevalence and outbreak of HFMD in the population.<sup>11</sup>

The most common clinical presentation among the children in the study was fever (72%) and lesions on the hand, foot and oral cavity (86%, 92% and 68%). In few cases lesions were also present on the chest, trunk, buttocks and genital region. Breathlessness, cough and diarrhoea were the other symptoms which the patients had.

In 46% (23) cases symptoms lasted for only 7 days. 32% (16) had contact history with 18% being family contacts.

Complications developed in 10% (5) of the cases requiring hospital admission. Most common complication being neurological complication which was acute cerebellar ataxia (presented with swaying and falling forwards while walking; on examination-nystagmus, past pointing, Romberg's test were positive) and atypical febrile seizure. Others complications were septicaemia and complicated oral lesions. There have been outbreaks of HFMD in large parts of India; however, no reports of complications can be found in many of the medical literatures. <sup>7,12,13</sup>

A major factor noted among the cases that developed complications was that all were having chronic malnutrition. Malnutrition in itself is a risk factor and disease. Therefore, children with malnutrition should be given extra care and treatment to overcome it. Nutritional status of all the children should be assessed in all cases. Studies on risk factor profile is also very much limited in literatures. Therefore more future studies that emphasize on risk factor profile is required to find its association with attack rates. <sup>14</sup>

Normally there is no enteric viral flora in human beings. Usually, only one type of enterovirus multiplies in an individual at any given point of time. Polio vaccination has eliminated polio viruses from the gut thereby increasing the chances of the coxsackievirus and enteroviral infections. It is possible that the emergence of

HFMD in India may be related to the mass polio vaccination. Coxsackievirus A16 is more common and has a benign course, whereas enterovirus 71 is rare and is associated with a serious outcome.<sup>12</sup>

#### **CONCLUSION**

Even though majority of the cases had uncomplicated course, 10% cases showed complications. Therefore, awareness should be made regarding chances of complications and its risk factors. Assessment of nutritional status should be done in all cases. Avoiding contact with cases, maintaining good personal hygiene and surveillance are probably the most effective preventive measures. Health care providers training and mass awareness programmes among public is also important.

Funding: No funding sources Conflict of interest: None declared Ethical approval: The study was approved by the Institutional Ethics Committee

#### **REFERENCES**

- CDC. Causes and Transmission of Hand, Foot, and Mouth disease. Centers for Disease Control and Prevention, 2022. Available at: https://www.cdc.gov/hand-foot-mouth/about/ transmission.html. Accessed 10 March 2023.
- 2. Ministry of health and family welfare (MOHFW), Hand Foot Mouth Disease (HFMD) Guidelines. Available at: <a href="https://www.moh.gov.my/moh/resources/auto%20download%20images/589d71f71">https://www.moh.gov.my/moh/resources/auto%20download%20images/589d71f71</a> 4d23.pdf. Accessed 3 May 2023.
- 3. Guerra AM, Orille E, Waseem M. Hand Foot And Mouth Disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.
- 4. Lewis A, Josiowicz A, Hirmas Riade SM, Tous M, Palacios G, Cisterna DM. Introduction and differential diagnosis of monkeypox in Argentina, 2022. Emerg Infect Dis. 2022;28(10):2123-5.
- 5. Park B, Kwon H, Lee K, Kang M. Acute pancreatitis in hand, foot and mouth disease caused by Coxsackievirus A16: case report. Korean J Pediatr. 2017;60(10):333-6.
- 6. Ogilvie MM, Tearne CF. Spontaneous abortion after hand-foot-and-mouth disease caused by Coxsackie virus A16. Br Med J. 1980;281(6254):1527-8.
- 7. Kumar VS, Budur SV, Odappa GH, Bankolli SY, Rao AP. Clinical profile of hand, foot, and mouth disease and its associated complications among children in Shimoga City, southern Karnataka: A hospital-based study. Int J Sci Res. 2012;2(11):435–7.
- 8. Ang LW, Koh BK, Chan KP, Chua LT, James L, Goh KT. Epidemiology and control of hand, foot and mouth disease in Singapore, 2001-2007. Ann Acad Med Singapore. 2009;38(2):106–12.

- 9. Zhang D, Li Z, Zhang W, Guo P, Ma Z, Chen Q, et al. Hand-washing: the main strategy for avoiding hand, foot and mouth disease. Int J Environ Res Public Health. 2016;13(6):610.
- 10. Xu Z, Hu W, Jiao K, Ren C, Jiang B, Ma W. The effect of temperature on childhood hand, foot and mouth disease in Guangdong Province, China, 2010–2013: a multicity study. BMC Infect Dis. 2019;19(1):1-0.
- 11. Chen B, Yang Y, Xu X, Zhao H, Li Y, Yin S, et al. Epidemiological characteristics of hand, foot, and mouth disease in China: A meta-analysis. Medicine (Baltimore). 2021;100(20):e25930.
- 12. Kumar KB, Kiran AG, Kumar BU. Hand, foot and mouth disease in children: A clinico epidemiological study. Indian J Paediatr Dermatol. 2016;17(1):7.
- 13. Sharma A, Mahajan VK, Mehta KS, Chauhan PS, Manvi S, Chauhan A. Hand, foot and mouth disease:

- a single centre retrospective study of 403 new cases and brief review of relevant Indian literature to understand clinical, epidemiological, and virological attributes of a long-lasting Indian Epidemic. Indian Dermatol Online J. 2022;13(3):310–20.
- 14. Koh WM, Bogich T, Siegel K, Jin J, Chong EY, Tan CY, et al. The epidemiology of hand, foot and mouth disease in Asia: a systematic review and analysis. Pediatr Infect Dis J. 2016;35(10):e285-300.

Cite this article as: Linu M, Thomas R, Kumaran JA. Clinico-epidemiological profile and complications of hand foot mouth disease among cases attending tertiary care Centre in Northern Kerala, India. Int J Community Med Public Health 2023;10:2849-53.