Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20223320

Nutritional status and its effect on dental health among children

Hend A. Alanazi*, Huda K. Alenazi, Seham N. Alenazi, Noura H. Alotaibi, Khulud B. Alanazi, Ahmed S. Alqahtani, Yasser O. Alosaimi

Department of Dentistry, Al Yamamah Hospital, Riyadh, Saudi Arabia

Received: 01 December 2022 **Accepted:** 12 December 2022

*Correspondence: Dr. Hend A. Alanazi,

E-mail: drsunbol83@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Nutritional status has a significant role in oral health and disease. Protein deficiency is the key deficiency in intermediate malnutrition. Malnutrition can disrupt homeostasis, resulting in disease progression of the oral cavity, decreased resistance to microbial biofilm, and decreased tissue healing capacity. This paper examines the association between malnutrition, protein-energy malnutrition, and dental health. Malnutrition is a risk factor for several dental diseases, such as dental caries and periodontal diseases. Studies have suggested that enamel hypoplasia, salivary gland hypofunction, and compositional changes in the saliva may be the mechanisms through which malnutrition is associated with caries. The exfoliation and eruption of teeth are impacted by malnutrition, or protein energy malnutrition (PEM), starting in the early years and continuing throughout infancy. The risk of hypoplasia was higher in malnourished children. The development of hypocalcemia as a result of diarrhoea in chronic undernutrition may explain the link between PEM and poor enamel formation. Deficiencies of vitamins A, C, and D are found to be associated with hypoplasia. Protein-deficit malnutrition and low vitamin D levels, as well as obesity, are risk factors for dental caries in children. Early childhood malnutrition affects salivary gland hypofunction and compositional changes in the saliva, and these might be the mechanisms through which malnutrition is associated with caries. Early childhood protein-energy malnutrition (ECPEM) is associated with poor periodontal status and causes cancrum oris, necrotizing gingivitis, and other periodontal disease conditions, as well as symptoms that mimic periodontal conditions.

Keywords: Malnutrition, Protein-energy malnutrition, Dental caries

INTRODUCTION

Nutrition is the process by which food is taken in and considered in relation to the body's dietary needs. It is used for growth and development, to keep the body healthy, and to replace tissue. Malnutrition refers to the deficiencies, excesses, or imbalances in a person's intake of nutrients or energy, which can be explained by three broad groups of conditions: undernutrition, micronutrient-related malnutrition, and overweight or obesity. In a child's formative years, proper nutrition is essential because it guards against undernourishment, supports a strong immune system, prevents obesity, and lowers the chance of chronic disease. Protein-energy malnutrition (PEM) happens when a person is undernourished in terms of their

body's requirements for protein, energy, or both.^{1,2} Protein and nutritional energy deficits frequently coexist. Serious PEM is both chronic and acute, and it is made up of deficits in both protein and energy. Mild PEM has an acute course and the main energy shortfall; moderate PEM is chronic in nature and has a main protein deficiency.

The development of teeth and the development and maintenance of oral tissue are also affected by nutrition. Dental disease, while largely preventable, poses a major health burden for many countries. Nutritional status has a great impact on children's oral health and disease. The early development, healing, and ongoing integrity of oral tissues and structures are all influenced by dietary variables. Optimal nutrition during periods of hard and soft

tissue development allows oral tissues to reach their potential for growth and resistance to disease.

Today's medical professionals need to understand the many relationships between nutrition status and dental health, routinely screen patients for dental risk factors, and consider oral factors when providing patient care. This review study will provide an overview of several important nutritional factors that affect the dental health of children. In this review, nutritional status, such as PEM, and deficiencies of specific micronutrients associated with dental health conditions or diseases are explained.

METHODS

The medical topic headings (MeSH) and a combination of all pertinent terms (malnutrition, protein-energy malnutrition, dental caries, hypoplasia, periodontal health, tooth eruption, children, pediatric) were used to conduct a thorough literature search in the Pubmed, Science Direct, and Cochrane databases on 07 December 2022. In order to prevent missing any potential research, the reference lists of the reference studies were used for a manual search for publications through Google Scholar. Publications that covered nutritional information and associated dental health conditions were reviewed. Date, language, and publication kind were all unrestricted.

DISCUSSION

Dental caries is a substantial health burden for children in several developing and developed countries. The associated pain from dental caries can impact the child's emotional status, sleeping pattern, and ability to learn and perform. Early childhood caries (ECC) is a severe health condition in children reported in many socially disadvantaged communities. The earlier introduction of nutrient-deficient diets consisting of energy-dense foods (high in sugary and fatty foods) contributed to the rising prevalence of ECC.²⁸ According to Masumo et al high sugary food and beverage intake, the presence of visible plaque, and the presence of enamel hypoplasia are the major risk indicators for early childhood dental caries.²⁹ Children with the best dietary habits are 44% less prone to have severe ECC than those with the worst habits. according to the Healthy Eating Index from the same source for 2 to 5-year-old children.30

In a research study conducted in India, dental caries was identified in 61% of malnourished children aged 3-6.7 Another study from Nepal also indicates a high prevalence of dental caries (70%) in malnourished children.³¹ Many studies found an inverse relationship between early childhood dental caries in primary dentition and underweight children compared to children without caries.³²⁻³⁵ However, conflicting results are also reported in studies. A systematic review found that children who were overweight or obese had significantly more dental caries than children who were of normal weight.³⁶

Protein-deficient increased susceptibility to dental caries, suggesting that oral host-defense properties are compromised. Salivary gland activity, a crucial element of oral host defense, is influenced by both a lack of protein and a consistent diet. There are three possible explanations for why a lack of protein, energy, or both increases a person's propensity to develop caries. First, malnutrition causes improperly formed enamel that is inadequately calcified and consequently susceptible to tooth decay. Second, a delayed tooth eruption brought on by undernutrition impacts the prevalence of caries at any given age. Finally, PEM worsens the risk of developing caries by altering the quality and function of saliva.

The importance of micronutrients such as minerals, vitamin D, and A has also been investigated in studies. In a case-control study by Atasoy et al, children with systemic zinc deficiency have a higher caries prevalence and poorer gingival health compared to their zinc-sufficient counterparts.³⁷ A lack of vitamin D during tooth development is likely to result in enamel abnormalities that make the tooth more vulnerable to dental caries. A comprehensive analysis of controlled clinical trials identified vitamin D as a promising caries prevention agent, despite the low degree of certainty regarding the reduction in the incidence of tooth decay.³⁸ Additionally, a recent case-control study with a sizable sample size discovered a link between lower caries risk and greater 25-(OH)D concentrations.³⁹ The findings of this study indicate inadequate vitamin D concentrations are related to an increased risk of childhood caries and have a lot of supporting evidence. 40-42 In a study of schoolchildren in Taiwan, calcium intake was only related to dental health in a crude model. However, after controlling for confounding factors, daily Ca/P ratio intakes were linked to dental caries. 43 The findings from various populations suggested that low vitamin D levels should be considered as a potential risk factor for caries in children.

A low level of vitamin A can increase the risk of developing dental caries by producing hypoplasia and impairing proper salivary function. It is frequently linked to diarrhea and PEM. Dental caries is uncommon even in severely malnourished societies with very low sugar intake. If excessive amounts of dietary free sugars are consumed, even the best nutritional status will not prevent dental caries.

Nutritional status on salivary secretion and composition

Human saliva is a unique secretion that maintains optimal oral health. The physiological status of the body, including hormonal, nutritional, and metabolic abnormalities, is thus reflected by it.⁴⁴ Saliva plays a crucial role in the mechanism of dental caries and raising the salivary flow rate may improve protection against the emergence of caries lesions. The stimulated salivary flow rate was significantly lower in malnourished children. In chronic PEM, the secretion rate of stimulated and unstimulated saliva was significantly reduced.⁴⁵⁻⁴⁷ Singh et al in a 2018

study about salivary flow rates, revealed a decrease in stimulated and unstimulated salivary flow rates in children with growth stunting compared to well-nourished children. Hashem et al explained that early childhood malnutrition affects salivary gland hypofunction and compositional changes in the saliva, and these might be the mechanisms through which malnutrition is associated with caries. He

Periodontal disease

Macro- and micronutrients are characterized by their potential to modulate pro- and anti-inflammatory cascades, respectively, in the host immune response. This is caused by periodontal pathogenic bacteria and their metabolic products, which aggravate tissue damage.

The health of periodontal tissues significantly correlates with diet. Periodontal disorders are more explicitly manifested among undernourished individuals. Some researchers emphasize the role of malnutrition and bad oral hygiene as predisposing factors to necrotizing gingivitis. A retrospective cohort study confirmed that adolescent ECPEM exposure correlates with poor periodontal status in permanent dentition.⁴⁹ Acute periodontal conditions in malnourished children have revealed that malnutrition is linked to cancrum oris, necrotizing gingivitis, or may be related to a variety of periodontal disease conditions or manifest symptoms that mirror periodontal conditions. 50,51 Dental caries and various forms of periodontal disease may exhibit oral symptoms that resemble periodontal disease or be linked to a variety of micro- and macronutrient deficiencies, including those of calcium, vitamin D, ascorbic acid, and protein. The process of periodontal inflammation can be positively influenced by the proper consumption of vitamins, minerals, omega-3 fatty acids, vegetable proteins, and unprocessed complex carbohydrates.

Disorders of the oral mucosa

Nutritional inadequacies result in oral mucosal atrophy and can weaken, inflame, and ulcerate the oral mucosa, as well as cause the loss of the filiform papillae on the lingual mucosa, which causes glossitis, or inflammation of the tongue. Deficiencies of iron, folate, vitamins of the B group, and vitamin A were related to the development of aphthosis.⁵²

In children, undernutrition is a major cause of noma. The child's immune system is first compromised by undernutrition, which subsequently fosters a suitable habitat for noma. In undernourished children, acute PEM is one of the most frequent causes of weakened immunity. ^{53,54} As the evidence shows, PEM syndrome was revealed in noma patients. ⁵⁵ Enwonwu et al also exhibited marked deficiencies of retinol, ascorbate, zinc, and essential amino acids. ⁵⁵ Any vitamin B deficiency could have an impact on a child's oral health. Lip cracking, sore tongue, hemorrhagic gingivitis, and inflammation of the

tongue are thus all associated with vitamin B1, B6, B12, and B2/B3 deficiency. Evidence suggests that noma instances are usually identified in children who are vitamin A, B, and C deficient.

CONCLUSION

Malnourished children have compromised oral health, which leads to poor dental health. Malnourished children have a higher susceptibility to enamel hypoplasia, dental caries, changes in salivary characteristics, poor periodontal health, and delayed eruption, primarily due to a protein deficiency. Vitamin A, C, and D deficiency are also linked to hypocalcemia, as well as hypoplasia and dental caries.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Psoter WJ, Reid BC, Katz RV. Malnutrition and dental caries: a review of the literature. Caries Res. 2005;39(6):441-7.
- 2. Russell SL, Psoter WJ, Jean-Charles G, Prophte S, Gebrian B. Protein-energy malnutrition during early childhood and periodontal disease in the permanent dentition of Haitian adolescents aged 12-19 years: a retrospective cohort study. Int J Paediatric Dentistry. 2010;20(3):222-9.
- 3. Sheetal A, Hiremath VK, Patil AG, Sajjansetty S, Kumar SR. Malnutrition and its oral outcome a review. J Clin Diagn Res. 2013;7(1):178-80.
- Vargas-Palomino KE, Chipana-Herquinio CR, Arriola-Guillén LE. Oral health and oral hygiene conditions and nutritional status in children attending a health facility in the Huánuco Region, Peru. Revista peruana de medicina experimental y salud publica. 2019;36(4):653-7.
- 5. Alvarez JO, Lewis CA, Saman C, Caceda J, Montalvo J, Figueroa ML, et al. Chronic malnutrition, dental caries, and tooth exfoliation in Peruvian children aged 3-9 years. Am J Clin Nutr. 1988;48(2):368-72.
- 6. Ehizele A, Ojehanon P, Akhionbare O. Nutrition and oral health. Benin J Postgrad Med. 2009;11(1).
- 7. Madhusudhan KS, Khargekar N. Nutritional Status and its Relationship with Dental Caries among 3-6-year-old Anganwadi Children. Int J Clin Pediatr Dent. 2020;13(1):6-10.
- 8. Singh A, Bharathi M, Sequeira P, Acharya S, Bhat M. Oral health status and practices of 5 and 12 year old Indian tribal children. J Clin Pediatric Dentistry. 2011;35(3):325-30.
- Vieira KA, Rosa-Júnior LS, Souza MAV, Santos NB, Florêncio T, Bussadori SK. Chronic malnutrition and oral health status in children aged 1 to 5 years: An observational study. Medicine. 2020;99(18):e19595.
- Reis CLB, Barbosa MCF, Henklein S, Madalena IR, de Lima DC, Oliveira MAHM, et al. Nutritional

- Status is Associated with Permanent Tooth Eruption in a Group of Brazilian School Children. Global Pediatric Health. 2021;8:2333794-11034088.
- 11. Dimaisip-Nabuab J, Duijster D, Benzian H, Heinrich-Weltzien R, Homsavath A, Monse B, et al. Nutritional status, dental caries and tooth eruption in children: a longitudinal study in Cambodia, Indonesia and Lao PDR. BMC Pediatr. 2018;18(1):300.
- Reis CLB, Barbosa MCF, Henklein S, Madalena IR, de Lima DC, Oliveira MAHM, et al. Nutritional Status is Associated with Permanent Tooth Eruption in a Group of Brazilian School Children. Global Pediatric Health. 2021;8:2333794-11034088.
- 13. Heinrich-Weltzien R, Zorn C, Monse B, Kromeyer-Hauschild K. Relationship between malnutrition and the number of permanent teeth in Filipino 10- to 13-year-olds. BioMed Res Int. 2013;205950.
- 14. Psoter W, Gebrian B, Prophete S, Bc R, Rv K. Effect of early childhood malnutrition on tooth eruption in Haitian adolescents. Comm Dentistry Oral Epidemiol. 2008;36:179-89.
- 15. Psoter W, Gebrian B, Prophete S, Reid B, Katz R. Effect of early childhood malnutrition on tooth eruption in Haitian adolescents. Comm Dentistry Oral Epidemiol. 2008;36(2):179-89.
- Setiawan AS, Abhista N, Andisetyanto P, Indriyanti R, Suryanti N. Growth Stunting Implication in Children: A Review on Primary Tooth Eruption. Eur J Gen Dentistry. 2022;11(1):7-16.
- 17. Nikiforuk G, Fraser D. The etiology of enamel hypoplasia: a unifying concept. J Pediatr. 1981;98(6):888-93.
- 18. Tinawi M. Disorders of Calcium Metabolism: Hypocalcemia and Hypercalcemia. Cureus. 2021;13(1):e12420.
- 19. Folayan MO, El Tantawi M, Oginni AB, Alade M, Adeniyi A, Finlayson TL. Malnutrition, enamel defects, and early childhood caries in preschool children in a sub-urban Nigeria population. PloS One. 2020;15(7):e0232998.
- Masterson EE, Fitzpatrick AL, Enquobahrie DA, Mancl LA, Conde E, Hujoel PP. Malnutrition-related early childhood exposures and enamel defects in the permanent dentition: A longitudinal study from the Bolivian Amazon. Am J Physical Anthropol. 2017;164(2):416-23.
- Rugg-Gunn AJ, Al-Mohammadi SM, Butler TJ. Malnutrition and developmental defects of enamel in 2- to 6-year-old Saudi boys. Caries Res. 1998;32(3):181-92.
- 22. Gutierrez Gossweiler A, Martinez-Mier EA. Chapter 6: Vitamins and Oral Health. Monographs Oral Sci. 2020;28:59-67.
- 23. Mubaraki SA. Hypoplasia Resulting from Nutritional Deficiency: A Case Report. Int J Clin Pediatr Dent. 2019;12(6):573-6.
- 24. Hong L, Levy SM, Warren JJ, Broffitt B. Association between enamel hypoplasia and dental caries in primary second molars: a cohort study. Caries Res. 2009;43(5):345-53.

- 25. Montero MJ, Douglass JM, Mathieu GM. Prevalence of dental caries and enamel defects in Connecticut Head Start children. Pediatric Dentistry. 2003;25(3):235-9.
- 26. Oliveira AF, Chaves AM, Rosenblatt A. The influence of enamel defects on the development of early childhood caries in a population with low socioeconomic status: a longitudinal study. Caries Res. 2006;40(4):296-302.
- 27. Pascoe L, Seow WK. Enamel hypoplasia and dental caries in Australian aboriginal children: prevalence and correlation between the two diseases. Pediatric Dentistry. 1994;16(3):193-9.
- 28. Hayden C, Bowler JO, Chambers S, Freeman R, Humphris G, Richards D, et al. Obesity and dental caries in children: a systematic review and meta-analysis. Comm Dentistry Oral Epidemiol. 2013;41(4):289-308.
- 29. Masumo R, Bardsen A, Mashoto K, Åstrøm AN. Prevalence and socio-behavioral influence of early childhood caries, ECC, and feeding habits among 6-36 months old children in Uganda and Tanzania. BMC Oral Health. 2012;12:24.
- 30. Nunn ME, Braunstein NS, Krall Kaye EA, Dietrich T, Garcia RI, Henshaw MM. Healthy eating index is a predictor of early childhood caries. J Dent Res. 2009;88(4):361-6.
- 31. Shakya A, Shenoy R, Rao A. Correlation between malnutrition and dental caries in children. J Nepal Paediatric Soc. 2013;33(2):99-102.
- 32. Heba E, Deema F, Leena M, Najat F, Sumer A, Najlaa A, et al. Prevalence of obesity among preschool children and its relation with dental caries. J Dentistry Oral Hygiene. 2017;9(1):1-7.
- 33. Bafti LS, Hashemipour MA, Poureslami H, Hoseinian Z. Relationship between Body Mass Index and Tooth Decay in a Population of 3-6-Year-Old Children in Iran. Int J Dentistry. 2015;126530.
- 34. Liang JJ, Zhang ZQ, Chen YJ, Mai JC, Ma J, Yang WH, et al. Dental caries is negatively correlated with body mass index among 7-9 years old children in Guangzhou, China. BMC Public Health. 2016;16:638.
- 35. Soares ME, Ramos-Jorge ML, de Alencar BM, Oliveira SG, Pereira LJ, Ramos-Jorge J. Influence of masticatory function, dental caries and socioeconomic status on the body mass index of preschool children. Arch Oral Biol. 2017;81:69-73.
- 36. Manohar N, Hayen A, Fahey P, Arora A. Obesity and dental caries in early childhood: A systematic review and meta-analyses. Obesity Rev. 2020;21(3):e12960.
- 37. Atasoy HB, Ulusoy ZI. The relationship between zinc deficiency and children's oral health. Pediatric Dentistry. 2012;34(5):383-6.
- 38. Hujoel PP. Vitamin D and dental caries in controlled clinical trials: systematic review and meta-analysis. Nutrition Rev. 2013;71(2):88-97.
- 39. Williams TL, Boyle J, Mittermuller BA, Carrico C, Schroth RJ. Association between Vitamin D and

- Dental Caries in a Sample of Canadian and American Preschool-Aged Children. Nutrients. 2021;13(12).
- Carvalho Silva C, Mendes R, Manso MDC, Gavinha S, Melo P. Prenatal or Childhood Serum Levels of Vitamin D and Dental Caries in Paediatric Patients: A Systematic Review. Oral Health Prev Dentistry. 2020;18(1):653-67.
- 41. Schroth RJ, Lavelle C, Tate R, Bruce S, Billings RJ, Moffatt MEK. Prenatal Vitamin D and Dental Caries in Infants. Pediatrics. 2014;133(5):e1277-84.
- 42. Kim I-J, Lee H-S, Ju H-J, Na J-Y, Oh H-W. A cross-sectional study on the association between vitamin D levels and caries in the permanent dentition of Korean children. BMC Oral Health. 2018;18(1):43.
- 43. Lin HS, Lin JR, Hu SW, Kuo HC, Yang YH. Association of dietary calcium, phosphorus, and magnesium intake with caries status among schoolchildren. Kaohsiung J Med Sci. 2014;30(4):206-12.
- 44. Spielmann N, Wong DT. Saliva: diagnostics and therapeutic perspectives. Oral Dis. 2011;17(4):345-54.
- 45. Singh P, Dua S, Varshney T, Saha S. A study to assess reaction time and its association with adiposity indices in healthy individuals in Uttarakhand. Indian J Dent Sci. 2018;10(2):78-82.
- 46. Johansson I, Saellström AK, Rajan BP, Parameswaran A. Salivary flow and dental caries in Indian children suffering from chronic malnutrition. Caries Res. 1992;26(1):38-43.
- 47. Psoter WJ, Spielman AL, Gebrian B, St Jean R, Katz RV. Effect of childhood malnutrition on salivary flow and pH. Arch Oral Biol. 2008;53(3):231-7.
- 48. Hashem D, El-Bayoumy S, Fahmy W, El Malt M. Effect of Childhood Malnutrition on Salivary Flow and pH. Al-Azhar Dent J Girls. 2016;3(2):141-5.
- 49. Russell S, Psoter W, Jean-Charles G, Prophte S, Gebrian B. Protein-energy malnutrition during early childhood and periodontal disease in the permanent

- dentition of Haitian adolescents aged 12–19 years: A Retrospective Cohort Study. Int J Paediatric Dentistry. 2010;20:222-9.
- 50. Enwonwu CO, Phillips RS, Ferrell CD. Temporal relationship between the occurrence of fresh noma and the timing of linear growth retardation in Nigerian children. Trop Med Int Health. 2005;10(1):65-73.
- 51. Jiménez LM, Duque FL, Baer PN, Jiménez SB. Necrotizing ulcerative periodontal diseases in children and young adults in Medellín, Colombia, 1965--2000. J Int Acad Periodontol. 2005;7(2):55-63.
- 52. Cazzolla AP, Cosola MD, Ballini A, Santacroce L, Lovero R, Testa NF, et al. The Association between Nutritional Alterations and Oral Lesions in a Pediatric Population: An Epidemiological Study. BioMed Res Int. 2021;9992451.
- Słotwińska SM, Słotwiński R. Host response, malnutrition and oral diseases. Part 1. Central-Eur J Immunol. 2014;39(4):518-21.
- 54. Farley E, Mehta U, Srour ML, Lenglet A. Noma (cancrum oris): A scoping literature review of a neglected disease (1843 to 2021). PLoS Neglected Trop Dis. 2021;15(12):e0009844.
- 55. Enwonwu CO, Falkler WA Jr, Idigbe EO, Afolabi BM, Ibrahim M, Onwujekwe D, et al. Pathogenesis of cancrum oris (noma): confounding interactions of malnutrition with infection. Am J Trop Med Hygiene. 1999;60(2):223-32.

Cite this article as: Alanazi HA, Alenazi HK, Alenazi SN, Alotaibi NH, Alanazi KB, Alqahtani AS, et al. Nutritional status and its effect on dental health among children. Int J Community Med Public Health 2023;10:393-7.