pISSN 2394-6032 | eISSN 2394-6040

Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20223317

Comparison between color stability of zirconia and lithium disilicate

Ali S. Alfaer^{1*}, Bassam A. Hamdi², Raghad T. Melibary³, Ryan H. Alfwais⁴, Naif M. Asirri⁵, Rawa A. Darweesh⁶, Lateefa M. Albazi⁷, Faten H. Alalawi⁸, Abdulaziz M. Asiri⁹, Hassan A. Alshehri¹⁰, Asrar S. Albuqayli¹¹

Received: 28 November 2022 **Accepted:** 12 December 2022

*Correspondence:

Dr. Ali S. Alfaer,

E-mail: Dr.alfaer@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The most widely used glass-ceramic is lithium disilicate (LD) because of its remarkable optical qualities, high strength, and simplicity of manufacture. Greater marginal strength, reduced porosity, and net-shaped manufacturing by pressing are further benefits of LD. The development of yttrium stabilized trigonal zirconia polycrystalline (Y-TZP) ceramics is the result of the pursuit for a material with both mechanical capabilities, like the resistance provided by metallic restoration, and the distinctive optical characteristics of glass-ceramic. The main drawback is the fragile veneering ceramics, which are prone to chipping, debonding, and breakage. There is evidence that extrinsic variables such beverages, mouthwashes, acid solutions, dental brushing, and increased temperatures might cause ceramic surfaces to deteriorate. The composition and surface shape of ceramic materials have an impact on the extrinsic pigment absorption or adsorption from the oral cavity. The main causes for the clinical replacement of anterior restorations, according to prior research, are poor color matching and color instabilities. Monolithic zirconia is more prone to staining from chlorhexidine, green tea, and coffee. In monolithic zirconia, the aging-related color changes are more pronounced. The color of the background substructure influences how zirconia restorations look overall. In terms of color stability and translucency, LD ceramic has also been proven to be more aesthetically pleasing. In comparison to monolithic zirconia, bilayer zirconia with feldspar veneering ceramic displayed reduced discoloration overall. It has been noted that monolithic zirconia is more susceptible to low-temperature degradation than the core Y-TZP. The use of current literature to infer outcomes has several limitations because in most vitro investigations, thermocycling has been carried out in water rather than oral cavity saliva and the influence of sunlight exposure, salivary proteins, food coloring, tobacco, different enzymes, and surface-related factors on the color stability is yet to be examined.

Keywords: Lithium disilicate, Zirconia, Color stability, Y-TZP ceramics, Fixed prosthesis coloring

¹Department of Prosthodontic, Rabigh General Hospital, Rabigh, Saudi Arabia

²College of Dentistry, Jazan University, Jazan, Saudi Arabia

³Davinci Clinic, Riyadh, Saudi Arabia

⁴Hayat Alshimal Medical Center, Rafha, Saudi Arabia

⁵Suleiman Habter Dental Medical Center, Abha, Saudi Arabia

⁶College of Dentistry, Vision Colleges, Jeddah, Saudi Arabia

⁷Ministry of Health, Mecca, Saudi Arabia

⁸Department of Dentistry, Al Alami Dental Clinic, Riyadh, Saudi Arabia

⁹Department of Dentistry, Armed Forces Hospital Southern Region, Abha, Saudi Arabia

¹⁰Armed Forces Hospital Southern Region, Khamis Mushait, Saudi Arabia

¹¹College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

INTRODUCTION

A society that values aesthetics is driving rising demand for cosmetic dental services.1 A revolution in dental materials as well as various novel therapeutic techniques have been brought about by aesthetic dentistry. Indirect restoration made of different all-ceramic materials is a common procedure in modern dentistry. The most widely used glass-ceramic is lithium disilicate (LD) because of its remarkable optical qualities, high strength, and simplicity of manufacture.^{2,3} Greater marginal strength, reduced porosity, and net-shaped manufacturing by pressing are further benefits of LD.4,5 Full contour fabrication of LD prosthesis eliminates the problem of physical-mechanical compatibility among two incompatible materials. Therefore, relative to bilayer ceramic repair, the probability to break or for the veneer to crack is smaller. Even though LD is one of the many flexible indirect restorative materials, due to its 2.8-3.5 MPa fracture toughness, caution is required when treating bruxism subjects with significant occlusal stress and non-vital teeth.⁶ Clinical applications include front fixed prosthesis, anterior veneers, posterior inlay or onlay, and toothimplant supported single crowns.^{7,8} The development of yttrium stabilized trigonal zirconia polycrystalline (Y-TZP) ceramics is the result of the pursuit for a material with both mechanical capabilities, like the resistance provided by metallic restoration, and the distinctive optical characteristics of glass-ceramic. The main drawback is the fragile veneering ceramics, which are prone to chipping, debonding, and breakage. These medical issues hastened the modification of translucency and microstructure.

The replacement teeth's size, texture, and shapes must be replicated in the prosthesis, along with matching light response. Moreover, the longevity of the cosmetic restorations depends on the restoration's color stability. Ceramics' physico-mechanical features have been improved, however they are still prone to discoloration. 9,10 There is evidence that extrinsic variables such beverages, mouthwashes, acid solutions, dental brushing, and increased temperatures might cause ceramic surfaces to deteriorate¹¹⁻¹³ The composition and surface shape of ceramic materials have an impact on the extrinsic pigment absorption or adsorption from the oral cavity. 14,15 It is recommended to use mouthwash ingredients with antibacterial qualities, such as benzydamine and chlorhexidine gluconate, in addition to mechanical oral hygiene techniques. Chlorhexidine is known to leave dark stains on the tongue's dorsum, various restorative materials, and teeth when used for an extended period of time. The staining of teeth and restorations is linked to nonenzymatic browning and colored metal sulfide production.¹⁶ Supragingival calculi development is also seen to rise with prolonged use of chlorhexidine. 17 Few scholars have suggested that the precipitation of food chromogens and locally adsorbed chlorhexidine is what causes the coloring. The main causes for the clinical replacement of anterior restorations, according to prior research, are poor color matching and color instabilities.¹⁸

METHODS

This study is based on a comprehensive literature search conducted on 21 October 2022, in the Medline and Cochrane databases, utilizing the medical topic headings (MeSH) and a combination of all available related terms, according to the database. To prevent missing any possible research, a manual search for publications was conducted through Google Scholar, using the reference lists of the previously listed papers as a starting point. We looked for valuable information in papers that discussed the information about comparison between color stability of zirconia and lithium disilicate. There were no restrictions on date, language, participant age, or type of publication.

DISCUSSION

Dental prosthetics' success depends on their capacity to restore both function and appearance. All-ceramic restorations are recommended in the front region due to deeper translucency adjacent to the native tooth. 19 For prosthetics to function successfully over time, the permanence of the established color is essential. Using a spectrophotometer, it is possible to assess how commonly consumed liquids such as coffee, tea, and chlorhexidine mouthwash affect the color stability of all-ceramic restoration. Studies that assess color stability and translucency make use of CIE Lab-based measures like color difference (ΔE) and translucency parameter. In a study evaluating the effects of accelerated aging on the translucency and color stability of monolithic zirconia and LD with various surface treatments, it was discovered that the aging process had an effect on the samples' color and translucency, particularly the zirconia specimens, which were found to be clinically unacceptable (E=5.03). Ceramics' surface disintegration is influenced by the material composition, manufacturing processes, surface finishing, and assessment methods. 20,21 According to Palla et al, the unglazed pressed ceramic's rough surface allows water to seep in and cause the silica network to disintegrate.²² Reduced crystallinity and improved color pigment absorption result from this. While glazed-pressed ceramics are resistant to water penetration and silica network breakdown because they don't have surface irregularities or microcracks. After immersing in the coffee for 72 hours at 1.71, Gawriolek et al reported the mean color parameter of the Ivoclar Porcelain System (IPS) e. max, a LD crown.²³ Mean color change for both glazed and polished computer-aided design and computer-aided manufacturing (CAD-CAM) processes was described by Alencar-Silva et al.²⁴ Due to drinks, LD ceramic is below the 1.30 perceptibility threshold. Monolithic zirconia is more prone to staining from chlorhexidine, green tea, and coffee. In monolithic zirconia, the aging-related color changes are more pronounced. In terms of color stability and translucency, LD ceramic has also been proven to be more aesthetically pleasing.

Without a ceramic covering to protect it, the monolithic zirconia is open to water and bodily fluids. Low-

temperature deterioration is the slow and spontaneous tetragonal to monoclinic phase transition that occurs on the zirconia surface when it comes into contact with water, water vapor, or bodily fluids at 37°C. 25-27 Phase conversion to monoclinic resulted in a volume increase of 4%. This 4% rise in the volume of the particles below the surface leads to stress buildup all across the monoclinic particles, which separates them from the surface and produces structural breakdown, surface roughness, and the emergence of microcracks.²⁸ This material degrades at low temperatures as a result of the exposure.²⁹ Because they are not covered by a ceramic veneer, monolithic zirconia restorations are immediately exposed to the intraoral environment. Manufacturers of monolithic zirconia lower the alumina percentage to increase translucency. According to Fathy et al, the alumina content is responsible for the material's resistance to low-temperature deterioration.³⁰ They claimed that because monolithic zirconia has a lower alumina content than core zirconia, it is more prone to low-temperature deterioration. Monoclinic phase change causes surface porosity, which improves incident light scattering and decreases translucency.31 Monolithic zirconia might therefore be more susceptible to low-temperature deterioration.³² When zirconia restorations are exposed to the oral environment over an extended period of time, this circumstance has a negative impact on their aesthetics.²⁷ Zirconia kept its colorimetric qualities after an aging protocol, according to Volpato et al.²⁷ However, in an autoclave without ultraviolet light exposure, these authors utilized an aging protocol. According to Dikicier et al, the average color difference between the zirconia specimens was 1.29.33 In comparison to other research, this number was significantly lower. This variation might be the result of the scientists employing veneered samples made from colored pre-sintered blocks instead of a separate coloring process before sintering. According to other investigations, metal oxides may be responsible for the aging-related color change in ceramic materials. Metallic pigments are used to shade ceramics' colors, and these oxides are easily destroyed by UV light.³³ As a result, the considerable color shift in the zirconia material observed in some studies evaluating aging changes may be a result of metal oxides dissolving due to ultraviolet light exposure during the aging process. After aging, the surface develops porosity, which increases incident light dispersion and reduces translucency.³⁰ Additionally, because each phase has a different refractive index, the presence of monoclinic and tetragonal phases in the structure decreases translucency with time.³⁰ After hydrothermal aging, Zirconia's translucency parameter mean values significantly decreased, according to Fathy et al's research.³⁰ Similar to the previous study, the zirconia group's translucency parameter values reduced, although this change was not statistically significant. As a result, the considerable color shift in the zirconia material observed in some studies evaluating aging changes may be a result of metal oxides dissolving due to ultraviolet light exposure during the aging process. After aging, the surface develops porosity, which increases incident light dispersion and reduces

translucency.31 Additionally, because each phase has a different refractive index, the presence of monoclinic and tetragonal phases in the structure decreases translucency with time.30,34 After hydrothermal aging, Zirconia's translucency parameter mean values significantly decreased, according to Fathy et al's research.³⁰ Similar to the previous study, the zirconia group's translucency parameter values reduced, although this change was not statistically significant. The different aging processes are to blame for this discrepancy. In their research, autoclave aging was carried out using more rigorous conditions—15 hours at 134°C and 200 kPa pressure, or 45 to 60 years in the patient's mouth. In the current investigation, the specimens were subjected to reduced temperature values and an artificial aging period that was similar to just one year of use. According to Liu et al, changes in contrast ratio values that are 0.07 or higher can be seen with the unaided eye.³⁵ Lee determined that this threshold value's matching translucency parameter value was 2.36 The color stability of ceramic systems is also impacted by the interplay of surface treatments with aging. 32,37 Comparing monolithic zirconia to ordinary zirconia, it was discovered that the translucency increased. Even with standard LD at the same material thickness, the monolithic zirconia's translucency was still inferior.38,39 Numerous research indicated no statistically significant differences between the surface treatments in the values of the translucency parameter. This suggested that the subgroups' surfaces had similar roughness characteristics, indicating that the polishing method used in these trials was similar to glazing. This shows that several polishing techniques can be used to create a surface that resembles glazed surfaces. 40-42 Other surface elements like shine have an impact on the appearance of ceramic materials (dull or glossy). 32,40 The short amount of time used to replicate the lifespan of the prosthesis in practice was another drawback of this study. Only water vapor was used for the aging process, and conventional temperatures were used. To reflect clinical conditions more accurately, more research needs to be done over longer times in the presence of saliva, colored beverages, smokes, and other enzymes.

In comparison to monolithic zirconia, bilayer zirconia with feldspar veneering ceramic displayed reduced discoloration overall. It has been noted that monolithic zirconia is more susceptible to low-temperature degradation than the core Y-TZP. Additionally, earlier studies have demonstrated that the core tetragonal zirconia utilized in bilayer zirconia prostheses has greater crystal intensity counts than monolithic zirconia. The lower average crystal size seen in the center of Y-TZP is also responsible for the material's greater resilience to low-temperature deterioration.

According to Keuper et al, monolithic zirconia's bigger grain sizes have stronger mechanical qualities but are less resistant to transformation.⁴⁴ Due to the ceramic's feldspar veneering, the hydrothermal aging's microcracks are not exposed to the discoloring solutions. Higher monoclinic phase, crystallinity, particle size, and porosity are all

blamed for the improved refractive indices during hydrothermal aging.^{34,42} The resultant color of bilayer zirconia could be indirectly impacted by the decreased of core Y-TZP. According translucency Suputtamongkol et al, the color of the background substructure influences how zirconia restorations look overall. ⁴⁵ The glaze was recommended by Camposilvan et al as a defense against hydrothermal aging for the underlying zirconia. 46 Researchers recommend polishing or glazing to create a smoother surface and to enhance the color stability because earlier studies have demonstrated that the finished restoration's surface roughness impacts color stability.⁴⁷

In one investigation employing water, the average color change seen with IPS e. max and bilayer zirconia was less than 3.5. Previous studies indicate that color changes less than 3.5 are clinically acceptable and indiscernible. The monolithic zirconia had mean color changes that were only a little bit above the level considered clinically acceptable.

The use of current literature to infer outcomes has several limitations because most in vitro investigations that included thermocycling were carried out in water rather than oral cavity saliva. The repeated exposure of ceramics during immersing may have an impact on the discoloration of the tested ceramics because the staining solutions are frequently not renewed during the immersion duration. Studies frequently overlook the synergistic effects of brushing and micro-surface roughness. Additional research is required to assess different zirconia brands because many studies are restricted to a single brand. The limited amount of time used to replicate the clinical lifespan of the prosthesis during such research is another drawback. The influence of sunlight exposure, salivary proteins, food coloring, tobacco, different enzymes, and surface-related factors on the color stability of zirconia and LD is examined in further experiments to properly match clinical settings.

CONCLUSION

According to a survey of recent literature, LD ceramic performs better in terms of color stability and translucency than monolithic zirconia ceramic. Compared to LD ceramic, coffee staining was more pronounced in monolithic and bilayer zirconia. Lithium disilicate was more impacted by green tea than coffee. All of the discoloring agents that were evaluated on monolithic zirconia showed the least color stability, and polishing paste-treated zirconia specimens showed more color change over time than those with other surface treatments. However, there was no discernible variation in color change between the groups with various surface treatments in the LD material.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Gordan VV, Abu-Hanna A, Mjor I. Esthetic dentistry in North American dental schools. J-Canad Dent Assoc. 2004;70(4):230-2.
- 2. Chen Y-M, Smales RJ, Yip KH-K, Sung W-J. Translucency and biaxial flexural strength of four ceramic core materials. Dental Materials. 2008;24(11):1506-11.
- 3. Gorman CM, McDevitt W, Hill R. Comparison of two heat-pressed all-ceramic dental materials. Dental Materials. 2000;16(6):389-95.
- 4. Gozneli R, Kazazoglu E, Ozkan Y. Flexural properties of leucite and lithium disilicate ceramic materials after repeated firings. J Dent Sci. 2014;9(2):144-50.
- 5. Albakry M, Guazzato M, Swain MV. Influence of hot pressing on the microstructure and fracture toughness of two pressable dental glass–ceramics. J Biomed Materials Res. 2004;71(1):99-107.
- Zhao K, Wei Y-R, Pan Y, Zhang X-P, Swain MV, Guess PC. Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns. Dental Materials. 2014;30(2):164-71.
- 7. Fonzar RF, Carrabba M, Sedda M, Ferrari M, Goracci C, Vichi A. Flexural resistance of heat-pressed and CAD-CAM lithium disilicate with different translucencies. Dental Materials. 2017;33(1):63-70.
- 8. Fischer K, Bühler-Zemp P, Völkel T. IPS e. max CAD. Scientific Documentation, Ivoclar Vivadent, Schaan, Liechtenstein. 2005.
- Pires-de FdCP, Casemiro LA, Garcia LdFR, Cruvinel DR. Color stability of dental ceramics submitted to artificial accelerated aging after repeated firings. J Prosthet Dent. 2009;101(1):13-8.
- Derafshi R, Khorshidi H, Kalantari M, Ghaffarlou I. Effect of mouthrinses on color stability of monolithic zirconia and feldspathic ceramic: an in vitro study. BMC Oral Health. 2017;17(1):1-8.
- 11. Jain C, Bhargava A, Gupta S, Rath R, Nagpal A, Kumar P. Spectrophotometric evaluation of the color changes of different feldspathic porcelains after exposure to commonly consumed beverages. Eur J Dent. 2013;7(02):172-80.
- 12. Garza LA, Thompson G, Cho S-H, Berzins DW. Effect of toothbrushing on shade and surface roughness of extrinsically stained pressable ceramics. J Prosthet Dent. 2016;115(4):489-94.
- 13. Kukiattrakoon B, Junpoom P, Hengtrakool C. Vicker's microhardness and energy dispersive x-ray analysis of fluorapatite-leucite and fluorapatite ceramics cyclically immersed in acidic agents. J Oral Sci. 2009;51(3):443-50.
- 14. Sarıkaya I, Yerliyurt K, Hayran Y. Effect of surface finishing on the colour stability and translucency of dental ceramics. BMC Oral Health. 2018;18(1):1-8.
- 15. Esquivel-Upshaw J, Dieng F, Clark A, Neal D, Anusavice K. Surface degradation of dental ceramics as a function of environmental pH. J Dent Res. 2013;92(5):467-71.

- Falkensammer F, Arnetzl GV, Wildburger A, Freudenthaler J. Color stability of different composite resin materials. J Prosthet Dent. 2013;109(6):378-83.
- 17. Sakaue Y, Takenaka S, Ohsumi T, Domon H, Terao Y, Noiri Y. The effect of chlorhexidine on dental calculus formation: an in vitro study. BMC Oral Health. 2018;18(1):1-7.
- Al-Zarea BK. Satisfaction with appearance and the desired treatment to improve aesthetics. Int J Dent. 2013:912368.
- 19. Raptis NV, Michalakis KX, Hirayama H. Optical behavior of current ceramic systems. Int J Periodont Restorat Dent. 2006;26(1).
- 20. Nogueira AD, Della Bona A. The effect of a coupling medium on color and translucency of CAD–CAM ceramics. J Dent. 2013;41:e18-23.
- Amaya-Pajares SP, Ritter AV, Vera Resendiz C, Henson BR, Culp L, Donovan TE. Effect of finishing and polishing on the surface roughness of four ceramic materials after occlusal adjustment. J Esthetic Restorative Dentistry. 2016;28(6):382-96.
- Palla E-S, Kontonasaki E, Kantiranis N, Papadopoulou L, Zorba T, Paraskevopoulos KM, et al. Color stability of lithium disilicate ceramics after aging and immersion in common beverages. J Prosthetic Dentistry. 2018;119(4):632-42.
- 23. Gawriołek M, Sikorska E, Ferreira LF, Costa AI, Khmelinskii I, Krawczyk A, et al. Color and luminescence stability of selected dental materials in vitro. J Prosthodont. 2012;21(2):112-22.
- 24. Alencar-Silva FJ, Barreto JO, Negreiros WA, Silva PG, Pinto-Fiamengui LMS, Regis RR. Effect of beverage solutions and toothbrushing on the surface roughness, microhardness, and color stainability of a vitreous CAD-CAM lithium disilicate ceramic. J Prosthetic Dentistry. 2019;121(4):711.
- 25. Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO. Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrO2-based dental ceramic. Dental Materials. 2014;30(12):e396-404.
- 26. Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP ceramics. J Am Ceramic Soc. 1999;82(8):2150-4.
- Volpato CÂM, Cesar PF, Bottino MA. Influence of accelerated aging on the color stability of dental zirconia. J Esthetic Restorat Dent. 2016;28(5):304-12.
- 28. Deville S, Gremillard L, Chevalier J, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttriastabilized zirconia. J Biomed Materials Res. 2005;72(2):239-45.
- 29. Bergamo ETP, da Silva W, Cesar PF, Del Bel Cury A. Fracture load and phase transformation of monolithic zirconia crowns submitted to different aging protocols. Operat Dent. 2016;41(5):E118-30.
- 30. Fathy SM, El-Fallal AA, El-Negoly SA, El Bedawy AB. Translucency of monolithic and core zirconia

- after hydrothermal aging. Acta Biomaterialia Odontologica Scandinavica. 2015;1(2-4):86-92.
- 31. Baldissara P, Llukacej A, Ciocca L, Valandro FL, Scotti R. Translucency of zirconia copings made with different CAD/CAM systems. J Prosthet Dent. 2010;104(1):6-12.
- 32. Harada K, Raigrodski AJ, Chung K-H, Flinn BD, Dogan S, Mancl LA. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J Prosthetic Dentistry. 2016;116(2):257-63.
- 33. Dikicier S, Ayyildiz S, Ozen J, Sipahi C. Effect of varying core thicknesses and artificial aging on the color difference of different all-ceramic materials. Acta Odontologica Scandinavica. 2014;72(8):623-9.
- 34. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent. 2002;88(1):4-9.
- 35. Liu MC, Aquilino SA, Lund PS, Vargas MA, Diaz-Arnold AM, Gratton DG, et al. Human perception of dental porcelain translucency correlated to spectrophotometric measurements. J Prosthodontics: Implant Esthetic Reconstruct Dent. 2010;19(3):187-93
- 36. Lee Y-K. Criteria for clinical translucency evaluation of direct esthetic restorative materials. Restorative Dentistry Endodont. 2016;41(3):159-66.
- 37. Harianawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont. 2014;6(6):456-61.
- Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dental Materials. 2014;30(10):1195-203
- 39. Beuer F, Stimmelmayr M, Gueth J-F, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dental Materials. 2012;28(4):449-56.
- 40. Lee W-F, Feng S-W, Lu Y-J, Wu H-J, Peng P-W. Effects of two surface finishes on the color of cemented and colored anatomic-contour zirconia crowns. J Prosthet Dent. 2016;116(2):264-8.
- 41. da Silva TM, Salvia ACRD, de Carvalho RF, Pagani C, da Rocha DM, da Silva EG. Polishing for glass ceramics: which protocol? J Prosthodont Res. 2014;58(3):160-70.
- 42. Sarac D, Sarac YS, Yuzbasioglu E, Bal S. The effects of porcelain polishing systems on the color and surface texture of feldspathic porcelain. J Prosthet Dent. 2006;96(2):122-8.
- 43. Paul A, Vaidhyanathan B, Binner JG. Hydrothermal aging behavior of nanocrystalline Y-TZP ceramics. J Am Ceramic Soc. 2011;94(7):2146-52.
- 44. Keuper M, Eder K, Berthold C, Nickel KG. Direct evidence for continuous linear kinetics in the low-temperature degradation of Y-TZP. Acta Biomaterialia. 2013;9(1):4826-35.

- 45. Suputtamongkol K, Tulapornchai C, Mamani J, Kamchatphai W, Thongpun N. Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns. J Adv Prosthodont. 2013;5(3):319-25.
- 46. Camposilvan E, Leone R, Gremillard L. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dental Materials. 2018;34(6):879-90.
- 47. Motro PFK, Kursoglu P, Kazazoglu E. Effects of different surface treatments on stainability of ceramics. J Prosthet Dent. 2012;108(4):231-7.

Cite this article as: Alfaer AS, Hamdi BA, Melibary RT, Alfwais RH, Asirri NM, Darweesh RA, et al. Comparison between color stability of zirconia and lithium disilicate. Int J Community Med Public Health 2023;10:320-5.