pISSN 2394-6032 | eISSN 2394-6040

Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20230948

Literature review of dry socket: etiology, pathogenesis, prevention, and management

Afrah Akram*

Department of Dentistry, Karachi Medical and Dental College, Karachi, Pakistan

Received: 10 October 2022 Revised: 13 March 2023 Accepted: 17 March 2023

*Correspondence: Dr. Afrah Akram,

E-mail: afrah.akram7@hotmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Dry socket/alveolar osteitis is a detrimental and excruciatingly painful post-extraction condition of the socket caused by the breakdown of a clot leading to the denudation of the socket that exposes underlying bone that is not protected by a blood clot or healing tissue and persists within or around the alveolus for days after the surgical tooth extraction with or without halitosis and suppuration. It is inevitable that dry socket will develop during routine oral surgery or dental procedures. The common factors that cause dry socket are smoking, poor oral hygiene, traumatic extractions caused by inexperienced dentists, previous bacterial infection, inflammation, fibrinolysis, and systemic disorders, in conjunction with oral contraceptives, menstrual cycle, and rapid irrigation of the socket after extraction with normal saline. The management of dry socket is directed towards palliative care. A substantial amount of research is required to provide a definitive treatment choice for dry socket. This literature review focuses on the pathogenesis, prevention, and management of dry socket.

Keywords: Dry socket, Alveolar osteitis, Extraction, Fibrinolytic activity, Oral contraceptives, Alveogyl

INTRODUCTION

Alveolar osteitis also known as dry socket is one of the most common postoperative complications after surgical removal of a tooth occurring 3 to 5 days after an extraction. It is a very painful inflammatory condition caused by the disintegration of the clot most commonly due to the fibrinolytic activity. The socket appears as a denuded sensitive bone covered in a film of grayishyellow debris and necrotic tissue. 1,2,3 Gingival inflammations is frequently associated with the presence halitosis as well as ipsilateral regional lymphadenopathy. The pain and discomfort is usually localized however, it can radiate to the auricular and the temporal region. It can also radiate towards the ocular and the frontal region through the involvement of maxilla though this involvement is rare.^{3,4}

Dry socket occurs in 0.5-5% of regular extractions but in the extractions of impacted mandibular third molars it can reach up to 38%. Some other terminologies for dry socket are alveolitis sicca dorosa, localized osteitis, localized alveolar osteitis, necrotic socket, fibrinolytic alveolitis, septic socket, necrotic socket, localized osteomyelitis, and alveolalgia. Osteomyelitis, and alveolalgia.

SIGN AND SYMPTOMS

A mixture of saliva and food debris may fill the socket. A slough can be present sometimes. The gingiva around the tooth can present redness, inflammation, tenderness, and oedematous. In most cases, there are no suppuration, swelling, or signs of a systemic infection, such as a fever or a systemic disturbance.

Following tooth extraction, over the first 24 hours patients' reports reduction in pain followed by a severe, debilitating, constant pain that continues to grow through the night, becoming most intense at 72 hours post-extraction. It is associated with foul taste and halitosis.⁶

PATHOGENESIS

Localized fibrinolysis (the conversion of plasminogen to plasmin, which dissolves fibrin crosslinks) within the socket leading to the loss of the blood clot is assumed to support the etiology of the dry socket. And The plasminogen pathway can be activated directly (physiologically) or indirectly (non-physiologic). Tissue plasminogen activators and endothelial plasminogen activators are examples of direct extrinsic activators. Plasma components such as factor XII and urokinase are direct intrinsic activators. Trauma results in the release of direct activators to the alveolar bone cells whereas indirect activators are released by bacterial toxins. In the release of direct activators are released by bacterial toxins.

Other risk factors that are responsible for the occurrence of dry sockets are mentioned as follows:

Age/gender

The age distribution in dry socket is influenced by the fact that the peak incidence occurs after the eruption of third molar usually between 20 to 40 years of age. 3,11-13 Older adults are more likely to have dry socket than younger people due to the chances of decreased immunity. 8 In a series of 4000 extractions, it was found that women had 50% higher chances of developing dry socket than men, although no difference was found in the incidence of dry socket related to gender by Colby. 7,11,14

Tobacco smoking/poor oral hygiene /pre-operative bacterial infection

Many authors demonstrated a statistical link between smoking and post-operative complications like dry socket. The prevalence of dry socket was substantially higher among smokers (12%) than in non-smokers (4%). It has been found that patients who have poor oral hygiene, as well as pre-operative periodontal infection at the site of extraction, are at higher risk of developing dry socket. The streptococcus mutans was linked to the development of dry socket as well as delayed healing at the extraction site.

Operator's experience/surgical trauma /excessive irrigation and curettage of alveolus

Inexperienced surgeons may cause more trauma during extraction, particularly during surgical extraction of mandibular third molars. There is a higher incidence of dry socket when the extraction is performed by an inexperienced dentist, according to Oginni et al.^{8,16,17} Many writers reported that the most prevalent cause of

dry socket is trauma during surgical extraction of a single tooth.

The prevalence of dry socket after single extraction was 7.3 percent and 3.4 percent after several extractions, according to one study.10,18 It has been proposed that excessive irrigation and curettage may interfere with clot formation and harm the alveolar bone.^{4,7,8}

Medications

Dry socket is caused by medications such as oral contraceptives. According to one study, females who use oral contraceptives have an increased risk of developing dry sockets. 19,20 Sweet and Butler discovered that an increase in the usage of oral contraceptives correlated with an increase in the occurrence of dry socket. 2,7 Estrogen may play an important function in the fibrinolytic process. It is thought to increase factors II, VII, VIII, X, and plasminogen to stimulate blood clot lysis. 7,21

Design of flap/sutures

According to certain researches, the design of a flap and the application of sutures have an impact on the development of dry socket.²² As per one study, the modified triangle flap is more effective than the buccal envelope flap in reducing the incidence of dry socket.^{15,23}

Systemic condition

Dry socket may occur as a result of a defective or altered healing process due to immunocompromised conditions such as hypertension, diabetes mellitus. ^{16,24} However, no evidence exists to prove any association between systemic diseases and dry socket.

PREVENTION AND MANAGEMENT

As dry socket is the most prevalent postoperative complication following extraction, several researchers have attempted to develop a viable preventative technique. There are numerous approaches and various strategies proposed to aid in the prevention of dry socket. As prevention is better than cure.

Systemic and topical antibiotics are said to be quite effective in the prevention of dry socket but their use is reserved for patients with compromised immune systems or multiple previous episodes of dry socket. Systemic antibiotics that are commonly used are clindamycin, penicillin, and metronidazole whereas among topical antibiotics tetracycline delivered in the form of powder, aqueous suspension, gauze drain and Gelfoam sponges are found to be very helpful according to many studies. 8,25-28

The other most effective antimicrobial therapy is chlorhexidine mouthwash in the concentration of 0.12%.

Most studies have found that the pre and perioperative use of chlorhexidine mouthwash greatly reduces the incidence of dry socket. However, some patients might complain of brown staining, but it is temporary and can be corrected by polishing.

Some studies proposed eugenol-containing dressing to prevent dry socket because of their sedative effect although the irritating local action of eugenol and the delay in wound healing related to prophylactic packing made it difficult to defend its use to prevent dry socket.²⁹⁻³²

Corticosteroid though cannot prevent the occurrence of dry socket yet it plays an important role in reducing the post-operative complications of dry socket.^{8,33}

Antifibrinolytic drugs such as para hydroxybenzoic acid (PHBA) and tranexamic acid have been demonstrated to minimize the occurrence of dry socket. PHBA also has antimicrobial properties but has been shown in animal tests to hinder bone repair. Tranexamic acid, on the other hand, is not well accepted and has not been shown to lessen the occurrence of dry socket.^{34,35}

Many literature has supported intra alveolar dressing as a treatment of dry socket however, they are known to decrease the wound healing process according to some studies.

Multiple studies were conducted to evaluate the efficacy of intra-alveolar dressings, according to one study it was concluded that zinc oxide eugenol is more effective as compared to Alveogyl.³⁶ Some research reports that packing with alvogyl induce significant inflammation and delay wound healing.²⁹⁻³¹

Faizel et al, on the other hand, conducted a study in which he claimed that alvogyl is preferable as an initial pain reliever and that Neocone has been the dressing material of choice for the management of dry socket.³⁷

With current emerging branches of wound healing in dentistry concentrated growth factor (CGF) and low level laser therapy (LLLT) have developed effective treatment options. These strategies help in wound healing by natural regenerative abilities of cells at the molecular level. CGF and LLLT illustrated better wound healing with respect to alleviating pain, decreasing inflammation and generating granulation tissue compared to standard techniques. In terms of capacity, CGF outperforms LLLT to create granulation tissue and eradicate pain symptoms in the first 7 days of treatment.³⁸

CONCLUSION

Dry socket is an inevitable and self-limiting condition. Patient assessment is necessary to evaluate the risk factors common to dry socket like tobacco smoking, poor oral hygiene, pre-existing bacterial infections, or

compromised immunity. Operators can also prevent the incidence of dry socket by proper tissue and instrument handling during surgical extraction, irrigation, and proper medication before and after the extraction. There is no specific treatment for dry socket. The management is mostly directed towards palliative care by first irrigating the socket with chlorhexidine, then applying an Alvogyl dressing and prescribing effective oral analgesics. The dressing is usually replaced in every 2 to 3 days depending on the healing of the socket. However, studies on the management of dry socket lack sufficient investigation and definite answers. There is currently no broadly acknowledged prophylactic measure available. More research and investigation are required to reach concrete conclusions.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Yurka HG, Wissler RN, Zanghi CN, Liu X, Tu X, Eaton MP. Congenital Heart Surgery Research Interest Group. The effective concentration of epsilon-aminocaproic acid for inhibition of fibrinolysis in neonatal plasma in vitro. Anesthesia & Analgesia. 2010;111(1):180-4.
- Sweet JB, Butler DP. Predisposing and operative factors: effect on the incidence of localized osteitis in mandibular third-molar surgery. Oral Surgery, Oral Medicine, Oral Pathology. 1978;46(2):206-15.
- 3. Fridrich KL, Olson RA. Alveolar osteitis following surgical removal of mandibular third molars. Anesthesia progress. 1990;37(1):32.
- 4. Birn H. Etiology and pathogenesis of fibrinolytic alveolitis ("dry socket"). International journal of oral surgery. 1973;2(5):211-63.
- 5. Kolokythas A, Olech E, Miloro M. Alveolar osteitis: a comprehensive review of concepts and controversies. International Journal of Dentistry. 2010;2010.
- 6. Bowe DC, Rogers S, Stassen LF. The management of dry socket/alveolar osteitis. J Ir Dent Assoc. 2011;57(6):305-10.
- 7. Kolokythas A, Olech E, Miloro M. Alveolar osteitis: a comprehensive review of concepts and controversies. International journal of dentistry. 2010;2010.
- 8. Suri N, Dutta A, Siddiqui N, Kaur K, Jangra D. A literature review on dry socket. IP International Journal of Maxillofacial Imaging. 2021;6(4):97-100.
- 9. Moore JW, Brekke JH. Foreign body giant cell reaction related to placement of tetracycline-treated polylactic acid: Report of 18 cases. Journal of Oral and Maxillofacial Surgery. 1990;48(8):808-12.
- 10. Kumar S, Manoharan S, Nazar N. Dry Socket and Its Management An Overview. Int J Dentistry Oral Sci. 2021;08(04):2158-61.

- 11. MacGregor AJ. Aetiology of dry socket: a clinical investigation. British Journal of Oral Surgery. 1968;6(1):49-58.
- 12. Chalifour RL. Therapeutique des algies alveolitiques par des injections periarterielles de novocaine. Schweiz. Monatsschr. Zahnheilkd. 1969;79:1324.
- 13. Lehner T. Analysis of one hundred cases of dry socket. Dent Pract Dent Rec. 1958;8:275-9.
- 14. Colby RC. The general practitioner's perspective of the etiology, prevention, and treatment of dry socket. General dentistry. 1997;45(5):461-7.
- Tarakji B, Saleh LA, Umair A, Azzeghaiby SN, Hanouneh S. Systemic review of dry socket: aetiology, treatment, and prevention. Journal of clinical and diagnostic research: JCDR. 2015;9(4):ZE10.
- Field EA, Speechley JA, Rotter E, Scott J. Dry socket incidence compared after a 12 year interval. British Journal of Oral and Maxillofacial Surgery. 1985;23(6):419-27.
- 17. Southam JC, Moody GH. The fibrinolytic activity of human and rat dental pulps. Archives of oral biology. 1975;20(12):783-IN3.
- 18. Birn H. Antifibrinolytic effect of Apernyl® in "dry socket". International journal of oral surgery. 1972;1(4):190-4.
- 19. Oginni FO, Fatusi OA, Alagbe AO. A clinical evaluation of dry socket in a Nigerian teaching hospital. Journal of oral and maxillofacial surgery. 2003;61(8):871-6.
- Sweet JB, Butler DP. Increased incidence of postoperative localized osteitis in mandibular third molar surgery associated with patients using oral contraceptives. American journal of obstetrics and gynecology. 1977;127(5):518-9.
- Ygge J, Brody S, Korsan-Bengtsen K, Nilsson L. Changes in blood coagulation and fibrinolysis in women receiving oral contraceptives: Comparison between treated and untreated women in a longitudinal study. American Journal of Obstetrics and Gynecology. 1969;104(1):87-98.
- 22. Schow SR. Evaluation of postoperative localized osteitis in mandibular third molar surgery. Oral Surgery, Oral Medicine, Oral Pathology. 1974;38(3):352-8.
- 23. Haraji A, Motamedi MH, Rezvani F. Can flap design influence the incidence of alveolar osteitis following removal of impacted mandibular third molars?. General dentistry. 2010;58(5):e187-9.
- 24. Lucas MA, Fretto LJ, McKee PA. The binding of human plasminogen to fibrin and fibrinogen. Journal of Biological Chemistry. 1983;258(7):4249-56.
- 25. Nusair YM, Younis MH. Prevalence, clinical picture, and risk factors of dry socket in a Jordanian dental teaching center. J Contemp Dent Pract. 2007;8(3):53-63.
- 26. Blondeau F, Daniel NG. Extraction of impacted mandibular third molars: postoperative

- complications and their risk factors. Journal of the Canadian Dental Association. 2007;73(4).
- Laird WR, Stenhouse D, Macfarlane TW. Control of post-operative infection. A comparative evaluation of clindamycin and phenoxymethylpenicillin. British Dental Journal. 1972;133(3):106-9.
- 28. Sorensen DC, Preisch JW. The effect of tetracycline on the incidence of postextraction alveolar osteitis. Journal of oral and maxillofacial surgery. 1987;45(12):1029-33.
- 29. Alexander RE. Dental extraction wound management: a case against medicating postextraction sockets. Journal of Oral and Maxillofacial Surgery. 2000;58(5):538-51.
- 30. Chapnick P, Diamond LH. A review of dry socket: a double-blind study on the effectiveness of clindamycin in reducing the incidence of dry socket. Journal (Canadian Dental Association). 1992;58(1):43-52.
- 31. Schatz JP, Fiore-Donno G, Henning G. Fibrinolytic alveolitis and its prevention. International journal of oral and maxillofacial surgery. 1987;16(2):175-83.
- Bloomer CR. Alveolar osteitis prevention by immediate placement of medicated packing. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2000;90(3):282-4.
- 33. Lele MV. Alveolar osteitis. A controlled trial with dental preparation. II. Journal of the Indian Dental Association. 1969;41(3):69-72.
- 34. MP SK. Knowledge, Attitude and practices regarding needlestick injuries among dental students. Asian J Pharm Clin Res. 2016;9(4):312-5.
- 35. Johnson WS, Blanton EE. An evaluation of 9-aminoacridine/Gelfoam to reduce dry socket formation. Oral Surgery, Oral Medicine, Oral Pathology. 1988;66(2):167-70.
- 36. Chaurasia NK, Upadhyaya C, Dixit S. Comparative Study to Determine the efficacy of Zinc Oxide Eugenol and Alveogyl in Treatment of Dry Socket. Kathmandu Univ Med J (KUMJ). 2017;15:203-6.
- 37. Faizel S, Thomas S, Yuvaraj V, Prabhu S, Tripathi G. Comparision between neocone, alvogyl and zinc oxide eugenol packing for the treatment of dry socket: a double blind randomised control trial. Journal of maxillofacial and oral surgery. 2015;14(2):312-20.
- 38. Kamal A, Salman B, Razak NH, Samsudin AR. A comparative clinical study between concentrated growth factor and low-level laser therapy in the management of dry socket. European journal of dentistry. 2020;14(04):613-20.

Cite this article as: Akram A. Literature review of dry socket: etiology, pathogenesis, prevention, and management. Int J Community Med Public Health 2023;10:1593-6.