Review Article

DOI: https://dx.doi.org/10.18203/2394-6040.ijcmph20222590

Associated factors and virologic outcomes of cisgender groups among people living with HIV/AIDS attending a tertiary health facility in Rivers State, Nigeria

Anwuri Luke^{1*}, Golden Owhonda², Bright O. Ogbondah¹, Charles I. Tobin-West³

Received: 02 August 2022 Revised: 14 September 2022 Accepted: 15 September 2022

*Correspondence: Dr. Anwuri Luke,

E-mail: ndimekz2010@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Virologic outcome is the assessment of an human immuno-deficiency virus (HIV)-positive patient response antiretroviral therapy adherence using real-time polymerase chain reaction assays after two consecutive viral load measurements ≥3 months apart. This study aimed to assess the associated factors of virologic outcomes among cisgender groups of people living with HIV/AIDS attending a tertiary health facility in Rivers State, Nigeria. This comparative cross-sectional study was conducted at the antiretroviral therapy clinic of the University of Port Harcourt Teaching Hospital from September 2020 to November 2020. The systematic sampling technique was employed to select 1600 participants; females (800), and males (800). Data was collected using a 3-item structured intervieweradministered questionnaire. Statistical package for social science (SPSS) version-25 was used to analyze data. Test of association was done using Chi-square, Fisher's exact and spearman rho test and set at a significance level of p<0.05 and 95% CI. Confounding variables were controlled using multiple logistic regression analysis. A total of 1600 participants; males (800), and females (800) were recruited. The study reported a mean age and standard deviation: male (44.53±10.50), female (40.58±9.34); virologic suppression levels; male (89.5%), female (89.6%). Having a treatment supporter (aOR=0.382; 95% CI=0.206-0.707; p=0.002) among the female gender was influenced by virologic outcome. The cisgender female group had slightly better virologic outcomes as opposed to the cisgender male group and this was significantly influenced by having a treatment supporter. Therefore, PLWHA should make personal efforts to participate in adherence counselling sessions and other HIV/AIDS support services offered at the ARV therapy clinics.

Keywords: Associated factors, Virologic outcomes, Cisgender groups, People living with HIV/AIDS

INTRODUCTION

Universally, the human rights of women are violated every day as several women are dependent on their male spouses/partners for their livelihood as a result of poverty, inequalities of wealth, low female empowerment, and poor decision-making power.^{1,2} The economically

disadvantaged female gender, are less likely to negotiate safe sex and take charge of their sexuality, but more likely to engage in risky sexual behaviours, and encounter diverse barriers to HIV/AIDS treatment, care and support compared to their male counterparts.³⁻⁵ These findings are not farfetched from the fact that gender which is defined as a society's shared belief in the socio-cultural,

¹Department of Community Medicine, College of Medical Sciences, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt, Rivers State, Nigeria

²Department of Public Health & Disease Control, Rivers State Ministry of Health, Port Harcourt, Rivers State, Nigeria ³Department of Preventive & Social Medicine, University of Port Harcourt, Choba, Port Harcourt, Rivers State, Nigeria

psychological and behavioural traits that distinguish males from females plays a crucial role which is implicated in defining the disparities in the management of HIV/AIDS.⁶-⁸ Even though, statistics have shown that access, adherence and virologic outcome of people living with HIV/AIDS (PLWHA) is higher in the female gender compared to their male counterpart; these disparities as reported in previous studies may be tantamount to the fact that the study participants were mostly females, knowing that the prevalence of HIV/AIDS is almost twice higher among adult females than males. 9-11 However, the factors associated with the virologic outcome of HIV-positive patients are dynamic with interventions that enhance retention in treatment, care and support regardless of where they access care. 12,13 These factors can be broadly categorized into; socio-demographic, socio-cultural, socioeconomic, psycho-social and HIV-support services. 14,15 Moreover, the negative influences of these factors in the absence of good family and social support predispose HIVinfected patients on management to stigmatization or/and discrimination with resultant poor virologic outcomes. 14,16 Hence, assessing how these factors influence virologic outcomes will improve the quality of healthcare services and retention in care for PLWHA within treatment centres and community-based pharmacies. 17,18

The virologic outcome of HIV-infected persons is one of the various ways of measuring adherence to HIV/AIDS management. Monitoring adherence to antiretroviral therapy (ART) is essentially dependent on; clinical, immunologic, and virologic outcome. 19,20 This can be influenced by the diverse socio-cultural (non-disclosure of HIV status, stigmatization/discrimination), psychosocial (depression, alcohol and substance abuse) and economic barriers that PLWHA encounter in the course of their management.^{3,5} However, these factors, predominant among the female gender as opposed to their male counterparts, can be addressed by improving retention in care through; HIV support services, community pharmacy, and adherence counselling. 17,21 Although, adherence to ART which is defined as the ability of an HIV-positive patient to consistently and accurately take prescribed highly active antiretroviral therapy (HAART) approximately at the same time according to the treatment plan in order to achieve virologic suppression.^{22,23} This goes beyond a client consistently and accurately taking ART but extends to strictly sticking to scheduled ARVtherapy clinic appointments, lifestyle modification, nutritional plan, family and social support and viral load monitoring. 19,20 HAART which is a combination of three or more antiretroviral drugs to treat HIV infection is often used interchangeably with ART.^{20,22}

Although, adherence can be measured in the following ways: Self-reporting, pharmacy refill, pill count, medication event monitoring system (MEMSCap) and viral load monitoring, this research will focus only on viral load monitoring.^{24,25} Viral load measurement used to assess the virologic outcome of HIV-positive persons, serves as an indicator for treatment failure (virologic

failure). This is defined as the inability to accomplish or sustain the suppression of viral replication ≤1000 copies/mL based on two consecutive viral load measurements 3-months apart, with adherence support following \geq 6-months of initiation of effective HAART. ^{26,27} On the other hand, virologic suppression is achieved when a patient's plasma HIV RNA level is ≤1000 copies/mL after two consecutive viral load measurements ≥3-months apart or below the lower limits of detection (LLOD) of currently used highly sensitive assays over a long-term adherence to ART. 24,28 Detection of viraemia at this threshold is frequently done using real-time polymerase chain reaction (PCR) assays, which has high sensitivity compared to the previously used PCR-based viral load platforms. Another important term to note is zero transmission, which is seen as a patient's plasma HIV RNA level is undetectable (<50 copies/ml), and this is commonly seen among those optimally adherent to ART over a long period. Nevertheless, some regimen require a longer duration to suppress HIV RNA levels, though a patient's baseline HIV RNA level may affect the time course of the response.^{29,30} In the course of this study, the terms above will be applied to all study participants using viral load monitoring to measure virologic outcome. To achieve sustained virologic suppression, a patient depends on four main factors: The ART regimen, adherence counselling, patient's understanding of the concept of HIV, side effects of ART and outcome of treatment, and family/social support.31

Figure 1 shows the progression of viral load in PLWHA from the time of infection, initiation of medication, implementation and through the persistence phase on ART.

At the end of 2019, 38 million people were infected with HIV, of which 36.2 million were adults (≥15 years) with a prevalence of 0.8%; 1.7 million new infections and 690,000 deaths from AIDS-related diseases worldwide. Within the adult population, 79% of PLWHA knew their status; 68% [males (61%), females (73%)], of those who were aware of their status had access to ART; and 53% of those who were on ART achieved suppression.^{9,11} Based on the 2015 United Nations, 90-90-90 treatment target reported that only three out of eight WHO regions have achieved virologic suppression: Asia and the Pacific (91%); the Middle East and North Africa (83%); Eastern Europe and Central Asia (93%); Western and Central Europe and North America (82%); Latin America (88%); Caribbean (80%); Eastern and Southern Africa (90%); Western and Central Africa (78%). Also, only 41 of the 196 countries worldwide have achieved virologic suppression (Nigeria not inclusive). However, only 14 of these countries (Australia, Netherland, Switzerland, Germany, Ireland, Monaco, Ukraine, Japan, Cambodia, Myanmar, Thailand, Vietnam, Botswana, Eswatini) have surpassed the current UNAIDS 95-95-95 treatment target. It is important to note that females showed better virologic suppression than the males, except in five countries (Chile, Mexico, Singapore, Kenya, and

Lesotho). ^{9,11} This is probably because the PLWHA among the female gender make personal efforts to access and adhere to their treatment irrespective of the socio-cultural, economic and psychosocial experiences they encounter in the course of their therapy. ^{9,11,33}

Despite the enormous global progress in the scale-up of treatment and prevention of HIV/AIDS, some high burden resource-poor settings are yet to achieve the earlier 'UNAIDS 90-90-90' treatment target.³³

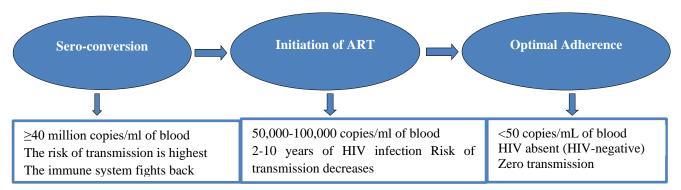


Figure 1: Viral load level as HIV infection progresses.³²

Nigeria is the third largest HIV/AIDS burden in the world only next to South Africa and India with over 1.3-2.4 million PLWHA, and only 55% of HIV-positive adults are on ART.^{10,11} The national HIV/AIDS Indicator and Impact Survey (NAIIS) reported a gender disparity in the prevalence 1.4% [women (1.9%), men (1.1%)] and virologic suppression 44.5% [men (40.9%), women (46.2%)] within the adult population (15-64 years). 10 The higher proportion of virologic suppression among the female gender may be attributed to the higher prevalence rate shown to be slightly greater than twice the value for the male gender. The south-south region where this study area is situated has the highest HIV/AIDS prevalence (3.1%) but the lowest virologic suppression level (31.1%) among the six geopolitical zones of Nigeria. 10 However, these findings may not be different from Rivers state, an oil-rich zone in the south-south region of Nigeria with multi-ethnic groups, diverse traditions, and increasing urbanization that has positively and negatively impacted country's economy and HIV/AIDS burden respectively. The State is currently has the third-highest HIV/AIDS prevalence (3.8%) almost thrice the national value with ART coverage of 43% and the least virologic suppression (27%), only second to Bayelsa State. 10 Despite the progress in the scale-up and strengthening of treatment aimed to improve access and achieve viral load suppression among PLWHA, Rivers State is yet to attain the previous 2015 ("third 90"), notwithstanding the current 2020 ("third 95") UNAIDS treatment target. 9,11 This study considered an equal proportion of male and female HIVpositive patients receiving ART in the study area. Although, there are seven types of gender groups (agender, cisgender, genderfluid, genderqueer, intersex, gender nonconforming, transgender), this study focused only on the cisgender group. In this population the biological sex assigned to an individual at birth corresponds to his/her identity as perceived in the society.³⁴ Findings from this study will increase the understanding of how gender influences the virologic outcome of PLWHA on treatment. This will enable key stakeholders involved in HIV/AIDS

response programmes to focus more on holistic clientoriented, gender-based strategies, community-driven interventions and social policies that will improve the decision-making power of the female gender. These measures will consequently improve adherence to HIV/AIDS management, achieve and surpass the "third 95" of the current UNAIDS treatment target, and finally end the HIV/AIDS pandemic by 2030.³⁵

METHODS

The study was conducted at the University of Port Harcourt Teaching Hospital located in Alakahia, Obio-Akpor LGA, along the East-West Road, and shares a boundary with the University of Port Harcourt. The hospital is a 950-bed tertiary health facility with sixteen clinical departments. This tertiary health facility with multi-disciplinary specialists provides care for in-patient, out-patient and emergency services to HIV-positive patients as it serves as a major referral point for primary and secondary health facilities within the State. The HIV/AIDS service within the ARV therapy centre reviews a range of 120-135 PLWHA on weekdays apart from public holidays, constituting a proportion of males (30%) and females (70%), as assessed 3-months before the study was conducted. This study was designed as a hospital-based comparative cross-sectional study to assess the associated factors of virologic outcomes among cisgender groups of people living with HIV/AIDS attending a tertiary health facility in Rivers State, Nigeria.

On daily basis, the systematic random sampling technique was employed to select eligible participants using the ARV therapy clinic register between September 2020 and November 2020 until the total sample size of 1600 (cisgender females-800, cisgender males-800) respondents was reached. Data was collected using a 3-item interviewer-administered structured questionnaire subdivided into different sections, adapted from the brief medication questionnaire.³⁶ During the study, each eligible

respondent after administration of the questionnaire was sent to the clinic's side laboratory for viral load monitoring which was done using Roche COBAS TaqMan96 (version 2.0) for real-time PCR HIV-1 RNA assay.²⁵ The virologic outcome of each eligible participant was determined by comparing the results of the viral load test (VLT) done 6-12 months before (recorded on the patient's folder/care card) and during the study. Each participant's viral load test was categorized into 2; virologic suppression (<1000 copies/mL), and virologic non-suppression (≥1000 copies/ml) and an overall result was grouped and compared between the gender groups.³⁷ Data were entered into Microsoft excel sheet, checked for completeness, coded, cleaned and analyzed on statistical package for the social sciences (SPSS) version-25 software. Categorical variables were presented as frequencies and proportions, while the continuous variables were summarized as mean and standard deviation. To assess for the association between dependent and independent variables, Pearson's Chi-square and Fishers' exact tests were used for categorical variables, while the spearman rho rank test was used for continuous variables. The statistical significance level was set at p<0.05 and a 95% confidence interval, and confounding variables were controlled for, using multiple logistic regression.

Ethical approval was sought from the research ethics committee in the study area with the approval number: UPTH/ADM/90/S.II/VOL.XI/885 and written informed consent were obtained from each participant before commencing the study. All eligible respondents were made to understand the aim of the study and given the option of participating willfully or not and also refrain from answering any uncomfortable questions where they choose to participate. The clinic care card numbers were used to guarantee anonymity and absolute confidentiality.

A total of 1700 questionnaires were administered to eligible participants. A response rate of 94% with 1600 questionnaires (800 HIV-positive males, 800 HIV-positive females) was analyzed as 100 questionnaires of respondents who gave informed consent were excluded from the data analysis; 67 did not respond to the majority of the key questions, while the remaining 33 refused to partake in the viral load test.

There was an observed mean age and standard deviation of 44.53±10.50 and 40.58±9.34 for the male and female groups respectively. The male group compared to their female counterparts had higher proportion of respondents among the following socio-demographic characteristics:

Age group; \geq 40 (67.0% versus 45.9%, p<0.001); married (75.8% versus 58.6%, p<0.001); secondary education (64.5% versus 57.3%, p=0.001); urban setting (81.1% versus 62.5%, p<0.001); and religion (97.4% versus 96.5%, p=0.171). On the contrary, the female group as opposed to the male group showed a higher proportion of participants in the following categories of variables: Igbo ethnic group (38.4% versus 34.0%, p=0.003); and business (29.5% versus 27.9%, p<0.001).

A greater proportion of the female group (89.6%) achieved virologic suppression as opposed to their male (89.5%) counterparts, though there was no statistically significant gender difference.

Concerning the factors associated with the virologic outcome of participants, the female group as opposed to the male group showed a greater proportion of respondents who had achieved viral load suppression. However, among those on first-line ART (92.3% versus 89.9%, p<0.001); once-daily ART doses (91.1% versus 89.7%, p=0.003); current ART in the last 1-year (90.8% versus 89.6%, p=0.023). On the other hand, the male group than the female group reported greater frequency of respondents who were virally suppressed among: participants who married between the ages of 30-39 years (n=346 versus n=124, p=0.023); those whose spouses/partners are HIVpositive (n=280 versus n=182, p=0.776); those who were never denied HIV services (n=707 versus n=698, p=0.403); never been verbally abused (n=702 versus n=684, p=0.331); received HIV support services (n=611 versus n=535, p<0.001); had undergone adherence counselling sessions (n=708 versus n=696, p=0.952); did not have treatment support (n=621 versus n=557, p=0.390).

The male group also showed a weak but positive correlation between income, level of education and virologic outcome. Although, the age group of participants had a weak and negative correlation with virologic outcomes. Conversely, the female respondents revealed a weak and negative correlation between age group, income, level of education and virologic outcomes. There was no statistical significance between the gender groups.

To control for confounding, the multiple logistic regression analysis revealed that participants who did not have a treatment support were less likely to optimally adhere to HIV/AIDS management as opposed to those who had, and this was statistically significant among the female group (aOR=0.382; 95% CI=0.206-0.707; p=0.002).

Table 1: Socio-demographic characteristics of HIV-positive male and female respondents.

Variables Age group (years)	Males (n=800)	Females (n=800)	Test statistic (p value)
Less than 20	5 (0.6)	1 (0.1)	106.161 (<0.001) b*
20-29	65 (8.1)	94 (11.8)	
30-39	194 (24.3)	367 (45.9)	

Continued.

Variables	Males (n=800)	Females (n=800)	Test statistic (p value)
40 and more	536 (67.0)	338 (42.3)	
Mean age±SD	44.53±10.50	40.58±9.34	
Marital status		-	
Single	144 (18.0)	160 (20.0)	93.782 (<0.001) b*
Cohabiting	6 (0.8)	9 (1.1)	
Married	606 (75.8)	469 (58.6)	
Separated	2 (0.3)	25 (3.1)	
Divorced	3 (0.4)	7 (0.9)	
Widowed	39 (4.9)	130 (16.3)	
Tribe			
Igbo	272 (34.0)	307 (38.4)	17.888 (0.003) b*
Hausa	10 (1.3)	0 (0.0)	
Yoruba	23 (2.9)	13 (1.6)	
Ikwerre	150 (18.8)	134 (16.8)	
Kalabari	22 (2.8)	16 (2.0)	
Others	323 (40.4)	330 (41.3)	
Education			
No formal education	4 (0.5)	18 (2.3)	20.660 (0.001) b*
Primary	76 (9.5)	96 (12.0)	, ,
Secondary	516 (64.5)	458 (57.3)	
Undergraduate	11 (1.4)	25 (3.1)	
Tertiary	177 (22.1)	189 (23.6)	
Post graduate	16 (2.0)	14 (1.8)	
Occupation			
Trading	71 (8.9)	141 (17.6)	317.133 (<0.001) b*
Business	221 (27.9)	236 (29.5)	
Civil/Public servant	133 (16.6)	86 (10.8)	
Engineering	16 (2.0)	0 (0.0)	
Retired	34 (4.3)	19 (2.4)	
Students	33 (4.1)	22 (2.8)	
Artisan	164 (20.5)	82 (10.3)	
Housewife	0 (0.0)	152 (19.0)	
Others	97 (12.1)	8 (1.0)	
Unemployed	31 (3.9)	54 (6.8)	
Residence			
Rural	72 (9.0)	147 (18.4)	68.610 (<0.001) *
Semi-urban	79 (9.9)	153 (19.1)	
Urban	649 (81.1)	500 (62.5)	
Religion		, ,	
Christianity	779 (97.4)	772 (96.5)	3.532 (0.171) b
Islam	15 (1.9)	25 (3.1)	, , ,
African tradition	6 (0.8)	3 (0.4)	
*Significant, bFisher's exact		` '	

^{*}Significant, bFisher's exact

Table 2: Association between socio-demographic factors and virologic outcome of HIV-positive male and female respondents.

	Males (n=800))		Females (n=800)			
Variables	Virologic outcome suppressed	Unsuppr- essed	Test statistic (p value)	Suppressed	Unsuppressed	Test statistic (p value)	
Age (in years)							
30	66 (94.3)	4 (5.7)	1.870 (0.172)	87 (91.6)	8 (8.4)	0.443 (0.506) ^b	
>30	650 (89.0)	80 (11.0)		630 (89.4)	7 (10.6)		

Continued.

	Males (n=800)			Females (n=800)			
Variables	Virologic outcome suppressed	Unsuppressed	Test statistic (p value)	Suppressed	Unsuppr- essed	Test statistic (p value)	
Marital status							
Single	128 (88.9)	16 (11.1)	3.413 (0.424) ^b	142 (88.8)	18 (11.3)	3.178 (0.489) ^b	
Cohabiting	4 (66.7)	2 (33.3)		8 (88.9)	1 (11.1)		
Married	544 (89.8)	62 (10.2)		423 (90.2)	46 (9.8)		
Divorced	5 (100)	0 (0.0)		26 (81.3)	6 (18.8)		
Widowed	35 (89.7)	4 (10.3)		118 (90.8)	12 (9.2)		
Employment status				-			
Professional	54 (94.7)	3 (5.3)	6.056 (0.109) ^b	84 (87.5)	12 (12.5)	6.451 (0.077) ^b	
Skilled manual	154 (90.6)	16 (9.4)		141 (94.6)	8 (5.4)		
Skilled non- manual	477 (89.3)	57 (10.7)		480 (88.4)	63 (11.6)		
Unskilled	31 (79.5)	8 (20.5)		12 (100.0)	0 (0.0)		
Residence							
Rural	63 (87.5)	9 (12.5)	0.340 (0.844)	129 (87.8)	18 (12.2)	0.816 (0.679)	
Semi-urban	71 (89.9)	8 (10.1)		139 (90.8)	14 (9.2)		
Urban	582 (89.7)	67 (10.3)		449 (89.8)	51 (10.2)		
Religion							
Christian	695 (89.2)	84 (10.8)	1.302 (0.465) ^b	694 (89.9)	78 (10.1)	2.731 (0.278) ^b	
Islam	15 (100.0)	0 (0.0)		20 (80.0)	5 (20.0)		
Others	6 (100.0)	0 (0.0)		3 (100.0)	0 (0.0)		
Education							
No formal education	4 (100.0)	0 (0.0)	0.528 (0.883) ^b	14 (77.8)	4 (22.2)	4.291 (0.215) ^b	
Primary	69 (90.8)	7 (9.2)		83 (86.5)	13 (13.5)		
Secondary	463 (89.7)	53 (10.3)		414 (90.4)	44 (9.6)		
Tertiary	180 (88.2)	24 (11.8)		206 (90.4)	22 (9.6)		

^{*}Significant, bFisher's exact

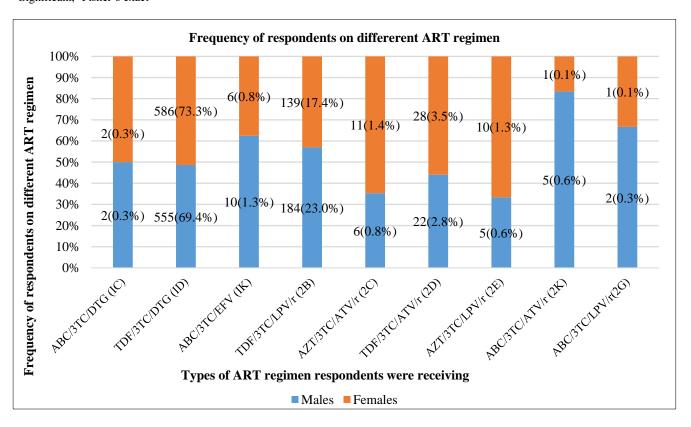


Figure 2: Bar-chart showing the frequency of respondents on different ART regimens.

Table 3: Association between socio-cultural factors and virologic outcome of HIV-positive male and female respondents.

	Males (n=800)			Females (n=800)			
Variables	Virologic outcome suppressed	Unsuppr- essed	Test statistic (p value)	Suppressed	Unsuppr- essed	Test statistic (p value)	
Are you married							
Yes	548 (90.1)	60 (9.9)	1.075 (0.300)	493 (90.1)	54 (9.9)	0.471 (0.493)	
No	168 (87.5)	24 (12.5)		224 (88.5)	29 (11.5)		
Age at marriage							
≤20	9 (90.0)	1 (10.0)	3.388 (0.301) ^b	88 (82.2)	19 (17.8)	9.064 (0.023) ^b *	
21-29	158 (92.4)	13 (7.6)		275 (92.0)	24 (8.0)		
30-39	346 (89.9)	39 (10.1)		124 (92.5)	10 (7.5)		
≥40	36 (83.3)	7 (16.7)		6 (85.7)	1 (14.3)		
Partner also positive							
Yes	280 (90.6)	29 (9.4)	0.441 (0.776) ^b	182 (89.2)	22 (10.8)	0.304 (0.862) ^b	
No	253 (89.7)	29 (10.3)		272 (90.7)	28 (9.3)		
Don't know	15 (88.2)	2 (11.8)		39 (90.70)	4 (9.3)		
Take medication frequen	ntly						
Yes	706 (89.6)	82 (10.4)	0.493 (0.483) ^b	700 (89.5)	82 (10.5)	0.460 (0.498) ^b	
No	10 (83.3)	2 (16.7)		17 (94.4)	1 (5.60)		

Table 4: Association between psychosocial factors and virologic outcome of HIV-positive male and female respondents.

	Males (n=800)			Females (n=800)			
Variables	Virologic outcome suppressed	Unsuppr- essed	Test statistic (p value)	Suppressed	Unsuppre ssed	Test statistic (p value)	
Sexual preference	e						
Homosexual	14 (93.3)	1 (6.7)	5.035 (0.085) b	12 (92.3)	1 (7.7)	1.569 (0.449) b	
Heterosexual	700 (89.6)	81 (10.4)		702 (89.7)	81 (10.3)		
Bisexual	2 (50.0)	2 (50.0)		3 (75.0)	1 (25.0)		
Disclosed status							
Yes	656 (89.3)	79 (10.7)	0.593 (0.441)	643 (89.7)	74 (10.3)	0.022 (0.882)	
No	60 (92.3)	5 (7.7)		74 (89.2)	9 (10.8)		
Denied treatmen	t						
Yes	9 (81.8)	2 (18.2)	0.700 (0.403) b	19 (95.0)	1 (5.0)	0.637 (0.425) ^b	
No	707 (89.6)	82 (10.4)		698 (89.5)	82 (10.5)		
Abused verbally							
Yes	14 (82.4)	3 (17.6)	0.944 (0.331) b	33 (94.3)	2 (5.7)	0.855 (0.355) ^b	
No	702 (89.5)	81 (10.3)	·	684 (89.4)	81 (10.6)		

bFisher's exact

Table 5: Correlation between age group, income level and virologic outcome of HIV-positive male and female respondents.

Variables	Males (n=800) Virologic outcome		Females (n=800) Virologic outcome	
		P value		P value
Age group	-0.016	0.653	-0.013	0.721
Income	0.002	0.954	-0.042	0.240
Education	0.010	0.779	-0.042	0.237

Table 6: Association between HIV support services and virologic outcome of HIV-positive male and female respondents.

	Males (n=800)			Females (n=8	00)	
Variables	Suppressed	Unsuppr- essed	Test statistic (p value)	Suppressed	Unsuppr -essed	Test statistic (p value)
HIV support serv	rices					
Yes	611 (88.8)	77 (11.2)	2.503 (0.114)	535 (92.1)	46 (7.9)	13.786 (<0.001)*
No	105 (93.8)	7 (6.3)		182 (83.1)	37 (16.9)	
Counselled						
Yes	708 (89.5)	83 (10.5)	0.004 (0.952) ^b	696 (89.6)	81 (10.4)	0.072 (0.789) ^b
No	8 (88.9)	1 (11.1)		21 (91.3)	2 (8.7)	
Treatment suppo	rt					
Yes	95 (87.2)	14 (12.8)	0.738 (0.390)	160 (88.9)	20 (11.1)	0.135 (0.713)
No	621 (89.9)	70 (10.1)		557 (89.8)	63 (10.2)	
A family member	· also positive					
Yes	67 (87.0)	10 (13.0)	0.561 (0.454)	114 (89.1)	14 (10.9)	0.052 (0.820)
No	649 (89.8)	74 (10.2)		603 (89.7)	69 (10.3)	
Paid for HIV serv	vices					
Yes	66 (88.0)	9 (12.0)	0.198 (0.656)	150 (90.4)	16 (9.6)	0.122 (0.727)
No	650 (89.7)	75 (10.3)		567 (89.4)	67 (10.6)	

^{*}Significant, bFisher's exact

Table 7: Multiple logistics regression analysis of virologic outcome among HIV- positive female respondents.

Variables	Crude odds	95% C.I.		P value	Ad odds	95% C.I	.•	P value
Type of regimen								
First line	0.366	0.229	0.585	>0.001*	0.393	0.152	1.018	0.054
Second line					Ref			
How many times a	day							
Once	0.460	0.275	0.770	0.003*	1.029	0.380	2.782	0.956
More than once					Ref			
Age married	•							
≥30	2.278	0.883	5.876	0.088	2.225	0.852	5.806	0.102
<30								
Art duration								
One year	0.471	0.270	0.824	0.008*	0.873	0.361	2.113	0.764
Two years and mor	e							
Have support								
Yes	0.423	0.266	0.673	<0.001*	0.382	0.206	0.707	0.002*
No					Ref			

^{*}Significant, bFisher's exact

DISCUSSION

The present study observed a better viral load suppression among the female group compared to their male counterpart. Although the proportion of respondents who were virally suppressed was closely approaching the previous UNAIDS "third 90" treatment target but yet to reach the current "third 95." However, these values are way beyond those of the Nigerian AIDS indicator and impact survey (NAIIS) conducted in 2018 which also reported a higher virologic suppression among the female gender as opposed to their male gender. Moreover, the present study observed much higher virologic suppression levels compared to the national and Rivers State values

respectively. ¹⁰ Also, the obvious improvement in the virologic outcome observed among HIV-positive females attending the study area may be attributed to the fact that females make personal efforts in adhering to their treatment, irrespective of the challenges they encounter. This is in agreement with the latest UNAIDS global data, which reported that a greater proportion of the female gender had attained virologic suppression than the male gender except in countries like; Chile, Mexico, Singapore, Kenya, and Lesotho. ^{9,11} Additionally, previous studies carried out in South Africa, Haiti, and other nations observed greater viral load suppression levels among the female gender than the male gender, though below the "third 90" of the previous UNAIDS treatment target, but with no significant gender difference. ^{9,11,33,38,39} On the

contrary, studies conducted in Zambia, Nepal, and the United States of America revealed that the male gender had a higher likelihood of achieving viral load suppression than the female gender, though there was no statistically significant gender difference.⁴⁰⁻⁴²

Regarding the treatment characteristics of respondents, being on first-line ART, a once-daily regimen and being on current ART ≥1 year duration, positively influenced their virologic outcome which was significantly in favour of the female group. This perhaps is a result of the inclusion of Dolutegravir into the HIV/AIDS treatment guideline which had been implemented in the study area about 18-months before this study was conducted. Moreover, virtually all those on the first-line regimen were substituted from Efavirenz-based ART (TDF+3TC+EFV) to the Dolutegravir-based regimen (TDF+3TC+DTG). These findings are in concordance with a meta-analysis⁴³ and previous studies conducted in Nigeria and Brazil. 44-46 The study also reported that within a period of ≥12-months, all the participants who were transitioned to the TDF+3TC+DTG regimen had increased odds of achieving virologic suppression as opposed to those retained on the previous fixed-dose ART (TDF+3TC+EFV).

Furthermore, the multiple regression analysis revealed that having at least a treatment supporter was reportedly associated with better virologic outcomes, which was only observed among the female group as opposed to their male counterpart. This finding may be attributed to the fact that having at least a treatment supporter, is a major HIV support service rendered to PLWHA at the ARV therapy centre in addition to others (viral load testing, adherence counselling, text messages and phone calls reminders). It is important to note that, to prevent non-adherence to HIV/AIDS therapy, the ARV therapy clinic in the study area sends reminders to clients through short message service (SMS), telephone calls and even deliver medications to the homes of their patients at no cost. This implies that if all HIV support services are rendered without payment, virologic outcomes of HIV-positive patients may improve. This is in agreement with the findings from previous studies carried out in Nigeria, Ethiopia, and the United States of America, which revealed better virologic outcomes among PLWHA accessing HIV support services at no cost, though the gender difference was not assessed.47-50

Strengths

The adequate training of interviewers, systematic sampling technique, confidentiality, and the use of standardized questionnaire were adopted to minimize anticipated biases.

The questionnaires were written and administered in both English language and pidgin at the convenience of the respondents. Multiple logistic regression analysis was used to control for confounding variables at the multivariate level.

Limitations

The study being descriptive in design; also sampling, interviewer, and information biases were anticipated in the course of the study.

CONCLUSION

The cisgender female group had slightly better virologic outcomes as opposed to the cisgender male group and this was significantly influenced by having a treatment supporter. Therefore, rendering HIV support services such as; having a treatment supporter, and adherence counselling at the treatment centre is shown to improve the virologic outcome of PLWHA, irrespective of the barriers they encountered.

Recommendations

PLWHA should make personal efforts to fully participate in adherence counselling sessions, attend scheduled clinic appointments and ensure that they benefit from other treatment support services offered by their respective ARV therapy clinics.

ACKNOWLEDGEMENTS

Authors would like to appreciate all the esteemed PLWHA who make personal efforts to adhere to their management plan, irrespective of the socio-cultural, psychosocial and economic barriers they encounter and all stakeholders who support HIV/AIDS services.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- 1. Kharsany ABM, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status, Challenges and Opportunities. Open AIDS J. 2016;10(1):34-48.
- 2. Joint United Nations Programme on HIV/AIDS (UNAIDS). Global HIV Statistics: Ending the AIDS Epidemic. Geneva, Switzerland. 2020;6. Available at: https://www.unaids.org/en/resources/fact-sheet. Accessed on 27 December 2020.
- Becker N. Multi-Level Barriers to ART Adherence among HIV-Infected Women in Rural Eswatini: A Mixed Methods Approach [Doctor of Philosophy in Public Health]. The University of Massachusetts Amherst, United States of America. 2019;185. Available at: https://scholarworks.umass.edu/disser tations_2/1691/. Accessed 03 January 2021.
- Opio D, Semitala FC, Kakeeto A, Sendaula E, Okimat P, Nakafeero B, et al. Loss to Follow-Up and Associated Factors among Adult People Living with

- HIV at Public Health Facilities in Wakiso District, Uganda: A Retrospective Cohort Study. BMC Health Serv Res. 2019;19(628):10.
- Ojukwu CL. Effects of Nonadherence to HIV/AIDS Drugs on HIV-Related Comorbidities in Eastern Nigeria [Doctor of Philosophy in Public Health]. Walden University Minneapolis, United States of America; 2019;166. Available at: https://scholar works.waldenu.edu/dissertations. Accessed 28 December 2020.
- Nomoto R. Gender Equality: Glossary of Terms and Concepts. United Nations Children's Fund (UNICEF) Regional Office for South Asia Nepal, India. 2017;17. Available at: https://www.unicef.org/gender/training/content/resources/Glossary.pdf. Accessed on 25 December 2020.
- 7. Klaas NE, Thupayagale-Tshweneagae G, Makua TP. The Role of Gender in the Spread of HIV and AIDS among Farmworkers in South Africa. Afr J Prim Health Care Fam Med. 2018;10(1):8.
- 8. Girum T, Wasie A, Lentiro K, Muktar E, Shumbej T, Difer M, et al. Gender Disparity in Epidemiological Trend of HIV/AIDS Infection and Treatment in Ethiopia. Arch Public Health. 2018;76(51):10.
- Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS Data 2020. Geneva, Switzerland: United Nations. 2020;436. Available at: https://www.unaids.org/sites/default/files/media_ass et/2020 aids-data-book en.pdf.
- Federal Ministry of Health (FMOH). Nigeria HIV/AIDS Indicator and Impact Survey (NAIIS) 2018 Technical Report. Abuja, Nigeria; 2018:297. Available at: http://ciheb.org > Microsites > CIHEB > documentsPDF. Accessed on 08 April 2022.
- Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS Data 2021. Geneva, Switzerland; 2021;468. Available at: https://www. unaids.org/sites/default/files/media_asset/JC3032_A IDS_Data_book_2021_En.pdf. Accessed on 23 April 2022.
- 12. Mukumbang FC, Mwale JC, van Wyk B. Conceptualizing the Factors Affecting Retention in Care of Patients on Antiretroviral Treatment in Kabwe District, Zambia, Using the Ecological Framework. AIDS Res Treat. 2017;7356362:11.
- 13. McMahon JM, Braksmajer A, Zhang C, Leblanc N, Chen M, Aidala A, et al. Syndemic Factors Associated with Adherence to Antiretroviral Therapy among HIV-Positive Adult Heterosexual Men. AIDS Res Ther. 2019;16(1):32.
- 14. Selamu LG, Singhe MS, Assefa E. The Psychosocial Factors that Influencing Antiretroviral Treatment Adherence. J Clin Res HIV AIDS Prev. 2017;3(1):31-9.
- Chirambo L, Valeta M, Banda Kamanga TM, Nyondo-Mipando AL. Factors Influencing Adherence to Antiretroviral Treatment among Adults Accessing Care from Private Health Facilities in Malawi. BMC Public Health. 2019;19(1382):11.

- Campbell L, Masquillier C, Thunnissen E, Ariyo E, Tabana H, Sematlane N, et al. Social and Structural Determinants of Household Support for ART Adherence in Low and Middle-Income Countries: A Systematic Review. Int J Environ Res Public Health. 2020;17(3808):28.
- 17. Avong YK, Aliyu GG, Jatau B, Gurumnaan R, Danat N, Kayode GA, et al. Integrating Community Pharmacy into Community Based Anti-Retroviral Therapy Program: A Pilot Implementation in Abuja, Nigeria. Plos One. 2018;13(1):10.
- 18. Adeniyi OV, Ajayi AI, Ter Goon D, Owolabi EO, Eboh A, Lambert J. Factors Affecting Adherence to Antiretroviral Therapy among Pregnant Women in the Eastern Cape, South Africa. BMC Infect Dis. 2018;18(175):11.
- Joint United Nations Programme on HIV/AIDS (UNAIDS). HIV Care and Support Taking into Account: The 2016 WHO Consolidated Guidelines. Geneva, Switzerland. 2016;48. Available at: https://www.unaids.org/sites/default/files/media_ass et/JC2741_HIV-care-and-support_en.pdf. Accessed on 22 May 2022.
- National AIDS and STIs Control Programme (NASCP). National Guidelines for HIV Prevention Treatment and Care (2016). Abuja, Nigeria. 2016;250. Available at: https://www.prepwatch. org/wp-content/uploads/2017/08/nigeria_national_ guidelines_2016.pdf. Accessed on 22 May 2022.
- 21. Bvochora T, Satyanarayana S, Takarinda KC, Bara H, Chonzi P, Komtenza B, et al. Enhanced Adherence Counselling and Viral Load Suppression in HIV Seropositive Patients with an Initial High Viral Load in Harare, Zimbabwe: Operational issues. PLoS One. 2019;14(2):13.
- 22. World Health Organization. Guideline on When to Start Antiretroviral Therapy and on Pre-Exposure Prophylaxis for HIV. Geneva, Switzerland. 2015;78. Available at: http://www.ncbi.nlm.nih.gov/books/NBK327115/. Accessed on 22 May 2022.
- 23. Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS Monitoring 2021: Indicators for Monitoring the 2016 Political Declaration on Ending AIDS. Geneva, Switzerland. 2020;208. Available at: https://www.unaids.org/en/resources/documents/2020/global-aids-monitoring-guidelines. Accessed on 22 May 2022.
- 24. Ellman TM, Alemayehu B, Abrams EJ, Arpadi S, Howard AA, El-Sadr WM. Selecting a Viral Load Threshold for Routine Monitoring in Resource-Limited Settings: Optimizing Individual Health and Population Impact. J Int AIDS Soc. 2017;20(7):3.
- 25. Taieb F, Tram TH, Ho HT, Pham VA, Nguyen L, Pham BH, et al. Evaluation of Two Techniques for Viral Load Monitoring Using Dried Blood Spot in Routine Practice in Vietnam (French National Agency for AIDS and Hepatitis Research 12338). Open Forum Infect Dis. 2016;3(3):7.
- Ayele G, Tessema B, Amsalu A, Ferede G, Yismaw
 G. Prevalence and Associated Factors of Treatment

- Failure among HIV/AIDS Patients on HAART Attending University of Gondar Referral Hospital Northwest Ethiopia. BMC Immunol. 2018;19(37):13.
- 27. World Health Organization (WHO). Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service Delivery and Monitoring: Recommendations for a Public Health Approach. Geneva, Switzerland; 2021;592. Available at: https://www.who.int/publications-detail-redirect/978924003159330. Accessed on 22 May 2022.
- 28. Diress G, Dagne S, Alemnew B, Adane S, Addisu A. Viral Load Suppression after Enhanced Adherence Counseling and Its Predictors among High Viral Load HIV Seropositive People in North Wollo Zone Public Hospitals, Northeast Ethiopia: Retrospective Cohort Study. AIDS Res Treat. 2020;8909232:9.
- 29. Department of Health and Human Services. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. United States of America. 2021;463. Available at: https://clinicalinfo. hiv.gov/sites/default/files/guidelines/documents/Adu ltandAdolescentGL.pdf. Accessed on 22 May 2022.
- 30. Henegar CE, Westreich DJ, Maskew M, Brookhart MA, Miller WC, Majuba P, et al. Comparison of Pharmacy-Based Measures of Adherence to Antiretroviral Therapy as Predictors of Virologic Failure. AIDS Behav. 2015;19(4):612-8.
- 31. Iacob SA, Iacob DG, Jugulete G. Improving the Adherence to Antiretroviral Therapy, a Difficult but Essential Task for a Successful HIV Treatment: Clinical Points of View and Practical Considerations. Front Pharmacol. 2017;8(831):12.
- 32. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Antiretroviral Therapy for the Prevention of HIV-1 Transmission. N Engl J Med. 2016;375(9):830-9.
- 33. Marsh K, Eaton JW, Mahy M, Sabin K, Autenrieth CS, Wanyeki I, et al. Global, Regional and Country-Level 90-90-90 Estimates for 2018: Assessing Progress towards the 2020 Target. AIDS. 2019;33(3):213-26.
- 34. Morgan M, Dragon C, Daus G, Holzberg J, Kaplan R, Menne H, et al. Updates on Terminology of Sexual Orientation and Gender Identity Survey Measures. Federal Committee on Statistical Methodology, United States of America. 2020;32. Available at: https://nces.ed.gov/fcsm/pdf/fcsm_sogi_terminology_fy20_report_final.pdf. Accessed on 22 May 2022.
- 35. United States President's Emergency Plan for AIDS Relief (PEPFAR). Nigeria Country Operational Plan (COP) 2020 Strategic Direction Summary. United States of America. 2020;71. Available at: https://www.state.gov > uploads > 2020/07 > COP. Accessed on 22 May 2022.
- Svarstad BL, Chewning BA, Sleath BL, Claesson C.
 The Brief Medication Questionnaire: A Tool for Screening Patient Adherence and Barriers to Adherence. Patient Educ Couns. 1999;37(2):113-24.
- 37. Bezabhe WM, Chalmers L, Bereznicki LR, Peterson GM. Adherence to Antiretroviral Therapy and

- Virologic Failure: A Meta-Analysis. Medicine (Baltimore). 2016;95(15):9.
- 38. Conan N, Simons E, Chihana ML, Ohler L, FordKamara E, Mbatha M, et al. Increase in HIV Viral Suppression in KwaZulu-Natal, South Africa: Community-Based Cross-Sectional Surveys 2018 and 2013. What Remains to be Done? Plos One. 2022;17(3):12.
- 39. Louis FJ, Buteau J, François K, Hulland E, Domerçant JW, Yang C, et al. Virologic Outcome among Patients Receiving Antiretroviral Therapy at Five Hospitals in Haiti. Plos One. 2018;13(1):12.
- Andronescu L, Zulu PM, Jackson SS, Hachaambwa L, Claassen CW, Stafford KA. The Association between Gender and HIV Viral Suppression on Third-Line Therapy in Zambia: A Retrospective Cohort Study. Int J STD AIDS. 2019;30(5):453-9.
- 41. Ojha CR, Shakya G, Dumre SP. Virologic and Immunological Status of the People Living with HIV/AIDS Undergoing ART Treatment in Nepal. BioMed Res Int. 2016;681732:7.
- 42. Beer L, Mattson CL, Bradley H, Skarbinski J. Understanding Cross-Sectional Racial, Ethnic, and Gender Disparities in Antiretroviral Use and Viral Suppression among HIV Patients in the United States. Medicine (Baltimore). 2016;95(13):9.
- 43. Snedecor SJ, Radford M, Kratochvil D, Grove R, Punekar YS. Comparative Efficacy and Safety of Dolutegravir Relative to Common Core Agents in Treatment-Naïve Patients Infected with HIV-1: A Systematic Review and Network Meta-Analysis. BMC Infect Dis. 2019;19(484):14.
- 44. Katbi M, Adeoye O, Adedoyin A, Faturiyele I, Adegboye A, Bello M. Virologic Response among Key Populations Living with HIV following a Switch to Dolutegravir-Based Regimen in Southern Nigeria. Int J Virol AIDS. 2020;7(69):8.
- 45. Meireles MV, Pascom ARP, Duarte EC, McFarland W. Comparative Effectiveness of First-Line Antiretroviral Therapy: Results from a Large Real-World Cohort After the Implementation of Dolutegravir. AIDS. 2019;33(10):1663-8.
- 46. Correa A, Monteiro P, Calixto F, Batista J d'Arc L, de Alencar Ximenes RA, Montarroyos UR. Dolutegravir: Virologic Response and Tolerability of Initial Antiretroviral Regimens for Adults Living with HIV. Menéndez-Arias L, Editor. Plos One. 2020;15(8):10.
- 47. Maduka O, Tobin-West C. Adherence Counseling and Reminder Text Messages Improve Uptake of Antiretroviral Therapy in a Tertiary Hospital in Nigeria. Niger J Clin Pract. 2013;16(3):7.
- 48. Afolabi B, Afolabi M, Afolabi A, Odewale M, Olowookere SA. Roles of Family Dynamics on Adherence to Highly Active Antiretroviral Therapy among People Living with HIV/AIDS at a Tertiary Hospital in Osogbo, South-West Nigeria. Afr Health Sci. 2013;13(4):920-6.
- 49. Negesa L. Adherence to Antiretroviral Therapy and Factors affecting People Living with HIV/AIDS and

- Taking Antiretroviral Therapy, Dire Dawa Town, Eastern Ethiopia. J Infect Dis Treat. 2017;3(1):6.
- 50. Robinson AC, Knowlton AR. Gender Differences in Psychosocial Factors Associated with HIV Viral Suppression among African-American Injection Drug Users. AIDS Behav. 2016;20(2):385-94.

Cite this article as: Luke A, Owhonda G, Ogbondah BO, Tobin-West CI. Associated factors and virologic outcomes of cisgender groups among people living with HIV/AIDS attending a tertiary health facility in Rivers State, Nigeria. Int J Community Med Public Health 2022;9:3948-59.